Sharp error estimates of vector splitting methods for the heat equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 3, pp. 472-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_3_a10,
     author = {S. B. Zaitseva and A. A. Zlotnik},
     title = {Sharp error estimates of vector splitting methods for the heat equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {472--491},
     year = {1999},
     volume = {39},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_3_a10/}
}
TY  - JOUR
AU  - S. B. Zaitseva
AU  - A. A. Zlotnik
TI  - Sharp error estimates of vector splitting methods for the heat equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 472
EP  - 491
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_3_a10/
LA  - ru
ID  - ZVMMF_1999_39_3_a10
ER  - 
%0 Journal Article
%A S. B. Zaitseva
%A A. A. Zlotnik
%T Sharp error estimates of vector splitting methods for the heat equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 472-491
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_3_a10/
%G ru
%F ZVMMF_1999_39_3_a10
S. B. Zaitseva; A. A. Zlotnik. Sharp error estimates of vector splitting methods for the heat equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 3, pp. 472-491. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_3_a10/

[1] Abrashin V. N., “Ob odnom variante metoda peremennykh napravlenii resheniya mnogomernykh zadach matematicheskoi fiziki. I”, Differents. ur-niya, 26:2 (1990), 314–323 | MR

[2] Abrashin V. N., Mukha V. A., “Ob odnom klasse ekonomichnykh raznostnykh skhem resheniya mnogomernykh zadach matematicheskoi fiziki”, Differents. ur-niya, 28:10 (1992), 1786–1799 | MR | Zbl

[3] Jovanović B. S., “On the convergence of a multicomponent alternating direction difference scheme”, Publ. Inst. Math. (Beograd), 56:70 (1994), 129–134 | MR | Zbl

[4] Vabischevich P. N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 44–51 | MR

[5] Jovanović B. S., “On a class of multicomponent alternating direction methods”, 3rd Internat. Coll. Numer. Analys. (Plovdiv, 1994), SCTP, Singapore, 1995, 97–106 | Zbl

[6] Abrashin V. N., “Ob odnom metode dekompozitsii oblasti pri reshenii zadach matematicheskoi fiziki”, Differents. ur-niya, 32:5 (1996), 652–660 | MR | Zbl

[7] Samarskii A. A., Vabischevich P. N., “Iteratsionnye metody mnogokomponentnogo rasschepleniya”, Dokl. RAN, 354:3 (1997), 310–312 | MR

[8] Bakhvalov N. S., “O svoistvakh optimalnykh metodov resheniya zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 10:3 (1970), 555–568 | MR | Zbl

[9] Zlotnik A. A., “Otsenka skorosti skhodimosti v $L_2$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1454–1465 | MR | Zbl

[10] Zlotnik A. A., Proektsionno-raznostnye skhemy dlya nestatsionarnykh zadach s negladkimi dannymi, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1979

[11] Zlotnik A. A., “Otsenka skorosti skhodimosti v $V_2(Q_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15: Vychisl. matem. i kibernetika, 1980, no. 1, 27–35 | MR | Zbl

[12] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnoi skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 20:2 (1980), 422–432 | MR | Zbl

[13] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Variatsionno-raznostnye metody v matem. fiz., Ch. 1, OTsM AN SSSR, M., 1984, 72–80

[14] Zlotnik A. A., Turetaev I. D., “Tochnye otsenki pogreshnosti metodov peremennykh napravlenii dlya uravneniya teploprovodnosti”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1983, no. 2, 8–13 | MR | Zbl

[15] Zlotnik A. A., Turetaev I. D., “Tochnye otsenki pogreshnosti nekotorykh dvukhsloinykh metodov resheniya trekhmernogo uravneniya teploprovodnosti”, Matem. sb., 128:4 (1985), 530–544 | MR

[16] Zaitseva S. B., Zlotnik A. A., “Optimalnye otsenki pogreshnosti odnogo lokalno-odnomernogo metoda dlya mnogomernogo uravneniya teploprovodnosti”, Matem. zametki, 60:2 (1996), 185–197 | MR

[17] Zaitseva S. B., Zlotnik A. A., “Tochnye otsenki gradienta pogreshnosti lokalno-odnomernykh metodov dlya mnogomernogo uravneniya teploprovodnosti”, Izv. vuzov. Matematika, 41:4 (1997), 51–65 | MR | Zbl

[18] Zaitseva S. B., Zlotnik A. A., “Otsenki pogreshnosti odnogo simmetrizovannogo lokalno-odnomernogo metoda dlya dvumernogo uravneniya teploprovodnosti”, Vestn. MEI, 1997, no. 6, 42–56

[19] Zaitseva S. B., Zlotnik A. A., “Error analysis in $L_2(Q)$ for simmetrized locally one-dimensional methods for the heat equation”, Rus. J. Numer. Analys. and Math. Modeling, 13:1 (1998), 69–91 | DOI | MR | Zbl

[20] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[21] Danford N., Shvarts Dzh., Lineinye operatory. Ch. 1. Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[22] Yanenko N. N., Metod drobnykh shagov resheniya zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[23] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[24] Dyakonov E. G., Raznostnye metody resheniya kraevykh zadach. Vyp. 2. Nestatsionarnye zadachi, Izd-vo MGU, M., 1972