@article{ZVMMF_1999_39_3_a10,
author = {S. B. Zaitseva and A. A. Zlotnik},
title = {Sharp error estimates of vector splitting methods for the heat equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {472--491},
year = {1999},
volume = {39},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_3_a10/}
}
TY - JOUR AU - S. B. Zaitseva AU - A. A. Zlotnik TI - Sharp error estimates of vector splitting methods for the heat equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 472 EP - 491 VL - 39 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_3_a10/ LA - ru ID - ZVMMF_1999_39_3_a10 ER -
%0 Journal Article %A S. B. Zaitseva %A A. A. Zlotnik %T Sharp error estimates of vector splitting methods for the heat equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1999 %P 472-491 %V 39 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_3_a10/ %G ru %F ZVMMF_1999_39_3_a10
S. B. Zaitseva; A. A. Zlotnik. Sharp error estimates of vector splitting methods for the heat equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 3, pp. 472-491. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_3_a10/
[1] Abrashin V. N., “Ob odnom variante metoda peremennykh napravlenii resheniya mnogomernykh zadach matematicheskoi fiziki. I”, Differents. ur-niya, 26:2 (1990), 314–323 | MR
[2] Abrashin V. N., Mukha V. A., “Ob odnom klasse ekonomichnykh raznostnykh skhem resheniya mnogomernykh zadach matematicheskoi fiziki”, Differents. ur-niya, 28:10 (1992), 1786–1799 | MR | Zbl
[3] Jovanović B. S., “On the convergence of a multicomponent alternating direction difference scheme”, Publ. Inst. Math. (Beograd), 56:70 (1994), 129–134 | MR | Zbl
[4] Vabischevich P. N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 44–51 | MR
[5] Jovanović B. S., “On a class of multicomponent alternating direction methods”, 3rd Internat. Coll. Numer. Analys. (Plovdiv, 1994), SCTP, Singapore, 1995, 97–106 | Zbl
[6] Abrashin V. N., “Ob odnom metode dekompozitsii oblasti pri reshenii zadach matematicheskoi fiziki”, Differents. ur-niya, 32:5 (1996), 652–660 | MR | Zbl
[7] Samarskii A. A., Vabischevich P. N., “Iteratsionnye metody mnogokomponentnogo rasschepleniya”, Dokl. RAN, 354:3 (1997), 310–312 | MR
[8] Bakhvalov N. S., “O svoistvakh optimalnykh metodov resheniya zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 10:3 (1970), 555–568 | MR | Zbl
[9] Zlotnik A. A., “Otsenka skorosti skhodimosti v $L_2$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1454–1465 | MR | Zbl
[10] Zlotnik A. A., Proektsionno-raznostnye skhemy dlya nestatsionarnykh zadach s negladkimi dannymi, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1979
[11] Zlotnik A. A., “Otsenka skorosti skhodimosti v $V_2(Q_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15: Vychisl. matem. i kibernetika, 1980, no. 1, 27–35 | MR | Zbl
[12] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnoi skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 20:2 (1980), 422–432 | MR | Zbl
[13] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Variatsionno-raznostnye metody v matem. fiz., Ch. 1, OTsM AN SSSR, M., 1984, 72–80
[14] Zlotnik A. A., Turetaev I. D., “Tochnye otsenki pogreshnosti metodov peremennykh napravlenii dlya uravneniya teploprovodnosti”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1983, no. 2, 8–13 | MR | Zbl
[15] Zlotnik A. A., Turetaev I. D., “Tochnye otsenki pogreshnosti nekotorykh dvukhsloinykh metodov resheniya trekhmernogo uravneniya teploprovodnosti”, Matem. sb., 128:4 (1985), 530–544 | MR
[16] Zaitseva S. B., Zlotnik A. A., “Optimalnye otsenki pogreshnosti odnogo lokalno-odnomernogo metoda dlya mnogomernogo uravneniya teploprovodnosti”, Matem. zametki, 60:2 (1996), 185–197 | MR
[17] Zaitseva S. B., Zlotnik A. A., “Tochnye otsenki gradienta pogreshnosti lokalno-odnomernykh metodov dlya mnogomernogo uravneniya teploprovodnosti”, Izv. vuzov. Matematika, 41:4 (1997), 51–65 | MR | Zbl
[18] Zaitseva S. B., Zlotnik A. A., “Otsenki pogreshnosti odnogo simmetrizovannogo lokalno-odnomernogo metoda dlya dvumernogo uravneniya teploprovodnosti”, Vestn. MEI, 1997, no. 6, 42–56
[19] Zaitseva S. B., Zlotnik A. A., “Error analysis in $L_2(Q)$ for simmetrized locally one-dimensional methods for the heat equation”, Rus. J. Numer. Analys. and Math. Modeling, 13:1 (1998), 69–91 | DOI | MR | Zbl
[20] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR
[21] Danford N., Shvarts Dzh., Lineinye operatory. Ch. 1. Obschaya teoriya, Izd-vo inostr. lit., M., 1962
[22] Yanenko N. N., Metod drobnykh shagov resheniya zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967
[23] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[24] Dyakonov E. G., Raznostnye metody resheniya kraevykh zadach. Vyp. 2. Nestatsionarnye zadachi, Izd-vo MGU, M., 1972