Estimating the complexity of deciphering a threshold functions in a $k$-valued logic
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 2, pp. 346-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_2_a21,
     author = {N. Yu. Zolotykh and V. N. Shevchenko},
     title = {Estimating the complexity of deciphering a threshold functions in a $k$-valued logic},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {346--352},
     year = {1999},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a21/}
}
TY  - JOUR
AU  - N. Yu. Zolotykh
AU  - V. N. Shevchenko
TI  - Estimating the complexity of deciphering a threshold functions in a $k$-valued logic
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 346
EP  - 352
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a21/
LA  - ru
ID  - ZVMMF_1999_39_2_a21
ER  - 
%0 Journal Article
%A N. Yu. Zolotykh
%A V. N. Shevchenko
%T Estimating the complexity of deciphering a threshold functions in a $k$-valued logic
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 346-352
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a21/
%G ru
%F ZVMMF_1999_39_2_a21
N. Yu. Zolotykh; V. N. Shevchenko. Estimating the complexity of deciphering a threshold functions in a $k$-valued logic. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 2, pp. 346-352. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a21/

[1] Shevchenko V. N., “O rasshifrovke porogovykh funktsii mnogoznachnoi logiki”, Kombinatorno-algebraich. metody v prikl. matem., Gorkovskii gos. un-t, Gorkii, 1987, 155–163

[2] Hegedüs T., “Geometrical concept learning and convex polytopes”, Proc. 7th Ann. ACM Conf. Comput. Learning Theory, ACM Press, New York, 1994, 228–236 | MR

[3] Zolotykh N. Yu., Shevchenko V. N., “Rasshifrovka porogovykh funktsii $k$-znachnoi logiki”, Diskretnyi analiz i issl. operatsii, 2:3 (1995), 18–23 | MR

[4] Shevchenko V. N., “O nekotorykh funktsiyakh mnogoznachnoi logiki, svyazannykh s tselochislennym programmirovaniem”, Metody diskretnogo analiza v teorii grafov i skhem, 42, In-t matem. SO AN SSSR, Novosibirsk, 1985, 99–108 | MR

[5] Nechiporuk E. I., “O sinteze skhem iz porogovykh elementov”, Probl. kibernetiki, 11, Nauka, M., 1964, 49–62

[6] Veselov S. I., Nizhnyaya otsenka srednego chisla neprivodimykh i krainikh tochek v dvukh zadachakh diskretnogo programmirovaniya, Dep. v VINITI No 619-84, 1984

[7] Shevchenko V. N., Kachestvennye voprosy tselochislennogo programmirovaniya, Fizmatgiz, M., 1995 | MR | Zbl

[8] Ansel Zh., “O chisle monotonnykh bulevykh funktsii $n$ peremennykh”, Kibernetich. sb. Nov. ser., 5, Mir, M., 1968, 53–57

[9] Antony M., Brightwell G., Cohen D., Shawe-Taylor J., “On exact specification by examples”, Proc. 5th Ann. ACM Conf. Comput. Learning Theory, ACM Press, New York, 1992, 311–318