On the accuracy of solving difference equations that describe the behavior of a plate under a dynamic load
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 2, pp. 323-331
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_2_a18,
     author = {V. N. Brusnikin},
     title = {On the accuracy of solving difference equations that describe the behavior of a plate under a dynamic load},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {323--331},
     year = {1999},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a18/}
}
TY  - JOUR
AU  - V. N. Brusnikin
TI  - On the accuracy of solving difference equations that describe the behavior of a plate under a dynamic load
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 323
EP  - 331
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a18/
LA  - ru
ID  - ZVMMF_1999_39_2_a18
ER  - 
%0 Journal Article
%A V. N. Brusnikin
%T On the accuracy of solving difference equations that describe the behavior of a plate under a dynamic load
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 323-331
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a18/
%G ru
%F ZVMMF_1999_39_2_a18
V. N. Brusnikin. On the accuracy of solving difference equations that describe the behavior of a plate under a dynamic load. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 2, pp. 323-331. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a18/

[1] Iovanovich B., “Additivnaya raznostnaya skhema dlya nestatsionarnogo uravneniya chetvertogo poryadka v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 17:2 (1977), 377–383 | MR

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[3] Viznyuk G. I., “O yavnykh skhemakh peremennykh napravlenii dlya resheniya uravnenii progiba szhatoi plastiny”, Chisl. analiz, Vyp. 1, IK AN USSR, Kiev, 1969, 21–35

[4] Khimich A. N., Prikazchikov V. G., “Tochnost integro-interpolyatsionnogo metoda v zadachakh o progibe konsolnoi plastiny”, Vychisl. i prikl. matem., 38, Izd-vo KGU, Kiev, 1979, 90–97 | MR

[5] Khurtsilava V. K., “O skhodimosti raznostnoi skhemy dlya uravnenii malykh progibov tonkoi ortotropnoi plastinki”, Chisl. analiz i voprosy optimizatsii vychislenii, IK AN USSR, Kiev, 1976, 26–32

[6] Prikazchikov V. G., Khimich A. N., “Raznostnaya zadacha na sobstvennye znacheniya dlya ellipticheskogo operatora chetvertogo poryadka so smeshannymi kraevymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 25:10 (1985), 1486–1495 | MR

[7] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[8] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[9] Brusnikin V. N., “O suschestvovanii resheniya v zadache optimizatsii tolschiny plastinki”, Kibernetika i sistemnyi analiz, 2, IK NAN Ukrainy, Kiev, 1996, 112–119 | MR

[10] Yukhno L. F., “O skhodimosti metoda setok pri reshenii nelineinykh evolyutsionnykh zadach”, Dokl. AN SSSR, 228:2 (1976), 325–328 | MR

[11] Dyakonov E. G., “Iteratsionnye metody resheniya raznostnykh analogov kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Sovrem. chisl. metody, Materialy mezhdunar. letnei shkoly po chisl. metodam. Vyp. 4, IK AN USSR, Kiev, 1970