Application of the numerical marker-and-cell method in a polar coordinate system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 2, pp. 294-299 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_2_a14,
     author = {Yu. V. Naumenko},
     title = {Application of the numerical marker-and-cell method in a polar coordinate system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {294--299},
     year = {1999},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a14/}
}
TY  - JOUR
AU  - Yu. V. Naumenko
TI  - Application of the numerical marker-and-cell method in a polar coordinate system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 294
EP  - 299
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a14/
LA  - ru
ID  - ZVMMF_1999_39_2_a14
ER  - 
%0 Journal Article
%A Yu. V. Naumenko
%T Application of the numerical marker-and-cell method in a polar coordinate system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 294-299
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a14/
%G ru
%F ZVMMF_1999_39_2_a14
Yu. V. Naumenko. Application of the numerical marker-and-cell method in a polar coordinate system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 2, pp. 294-299. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a14/

[1] Harlow F. H., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”, Phys. Fluids, 8:12 (1965), 2182–2189 | DOI | Zbl

[2] Harlow F. H., Hirt C. W., “Recent extensions to Eulerian methods for numerical fluid dynamics”, Zh. vychisl. matem. i matem. fiz., 12:3 (1972), 656–672 | MR | Zbl

[3] Fletner K., Vychislitelnye metody v dinamike zhidkostei, v. 2, Mir, M., 1991

[4] Harlow F. H., Shannon J. P., “Distortion of a splashing liquid drop”, Science, 157:3788 (1967), 547–550 | DOI

[5] Daly B. J., “Numerical study of the effect of surface tension on interface instability”, Phys. Fluids, 12:7 (1969), 1340–1354 | DOI | Zbl

[6] Ousset Y., “Etat actuel de la recherche sur la dynamique des fluides en rotation. 2eme partie”, ESA J., 1:2 (1977), 189–208 | MR

[7] Higgins B. G., Silliman W. J., Brown R. A., Scriven L. E., “Theory of meniscus in film flows. A synthesis”, Industr. and Engng Chem., Fundam., 16:4 (1977), 393–401 | DOI

[8] Orr F. M., Scriven L. E., “Rimming flow: numerical simulation of steady, viscous, free-surface flow with surface tension”, J. Fluid Mech., 84:1 (1978), 145–165 | DOI | MR | Zbl

[9] Gans R. F., “On the flow around a buoyant cylinder within a rapidly rotating horizontal cylindrical container”, J. Fluid Mech., 93:3 (1979), 529–548 | DOI | Zbl

[10] Haji-Sheikh A., Lakshimanarayanan R., Lou D. Y. S., Ryan P. J., “Confined flow in a partially-filled rotating horizontal cylinder”, Trans. ASME. J. Fluids Engng., 106:3 (1984), 270–278 | DOI