Singularly perturbed boundary value problems with locally perturbed initial conditions: Equations with convective terms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 2, pp. 262-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_2_a11,
     author = {G. I. Shishkin},
     title = {Singularly perturbed boundary value problems with locally perturbed initial conditions: {Equations} with convective terms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {262--279},
     year = {1999},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a11/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Singularly perturbed boundary value problems with locally perturbed initial conditions: Equations with convective terms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 262
EP  - 279
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a11/
LA  - ru
ID  - ZVMMF_1999_39_2_a11
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Singularly perturbed boundary value problems with locally perturbed initial conditions: Equations with convective terms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 262-279
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a11/
%G ru
%F ZVMMF_1999_39_2_a11
G. I. Shishkin. Singularly perturbed boundary value problems with locally perturbed initial conditions: Equations with convective terms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 2, pp. 262-279. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_2_a11/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, RAN, UrO, Ekaterinburg, 1992

[4] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996 | MR

[5] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations: convection-diffusion and flow problems, Springer, Berlin, 1996 | MR

[6] Shishkin G. I., Tselischeva I. V., “Metod dekompozitsii dlya singulyarno vozmuschennykh kraevykh zadach s lokalnym vozmuscheniem nachalnykh uslovii. Uravnenie s konvektivnymi chlenami”, Izv. vuzov. Matem., 1997, no. 4, 98–107 | MR | Zbl

[7] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[9] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[11] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinogo ellipticheskogo uravneniya v sluchae polnogo vyrozhdeniya”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1808–1825 | MR | Zbl

[12] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for quasi-linear parabolic equation in the case of complete degeneracy in spatial variables”, Sov. J. Numer. Analys. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl

[13] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for quasi-linear elliptic equation degenerating into first-order equation”, Sov. J. Numer. Analys. Math. Modelling, 6:1 (1991), 61–81 | DOI | MR | Zbl

[14] Shishkin G. I., “Raznostnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinykh ellipticheskikh uravnenii, vyrozhdayuschikhsya v uravnenie pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 32:4 (1992), 550–566 | MR | Zbl