On some finite element implementations of iterative methods with splitting of boundary conditions for Stokes and Stokes-type systems in a spherical layer: Axially symmetric case
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 1, pp. 98-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_1_a8,
     author = {N. A. Meller and B. V. Pal'tsev and E. G. Khlyupina},
     title = {On some finite element implementations of iterative methods with splitting of boundary conditions for {Stokes} and {Stokes-type} systems in a spherical layer: {Axially} symmetric case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {98--123},
     year = {1999},
     volume = {39},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_1_a8/}
}
TY  - JOUR
AU  - N. A. Meller
AU  - B. V. Pal'tsev
AU  - E. G. Khlyupina
TI  - On some finite element implementations of iterative methods with splitting of boundary conditions for Stokes and Stokes-type systems in a spherical layer: Axially symmetric case
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 98
EP  - 123
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_1_a8/
LA  - ru
ID  - ZVMMF_1999_39_1_a8
ER  - 
%0 Journal Article
%A N. A. Meller
%A B. V. Pal'tsev
%A E. G. Khlyupina
%T On some finite element implementations of iterative methods with splitting of boundary conditions for Stokes and Stokes-type systems in a spherical layer: Axially symmetric case
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 98-123
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_1_a8/
%G ru
%F ZVMMF_1999_39_1_a8
N. A. Meller; B. V. Pal'tsev; E. G. Khlyupina. On some finite element implementations of iterative methods with splitting of boundary conditions for Stokes and Stokes-type systems in a spherical layer: Axially symmetric case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 1, pp. 98-123. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_1_a8/

[1] Paltsev B. V., “Ob usloviyakh skhodimosti iteratsionnykh metodov s polnym rasschepleniem granichnykh uslovii dlya sistemy Stoksa v share i sharovom sloe”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 935–963 | MR

[2] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s rasschepleniem granichnykh uslovii dlya mnogomernoi sistemy tipa Stoksa. Periodicheskie “techeniya” mezhdu parallelnymi stenkami”, Dokl. RAN, 325:5 (1992), 926–931 | MR

[3] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s nepolnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:4 (1994), 101–150 | MR

[4] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s polnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:9 (1994), 109–138 | MR

[5] Paltsev B. V., Chechel I. I., “Algoritmy chislennykh realizatsii na osnove bilineinykh konechnykh elementov iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 37:7 (1997), 799–815 | MR

[6] Paltsev B. V., Chechel I. I., “O realnykh kachestvakh bilineinykh konechno-elementnykh realizatsii metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 247–261 | MR

[7] Paltsev B. V., Chechel I. I., “O nekotorykh sposobakh povysheniya skorosti skhodimosti na vysokikh garmonikakh bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 956–970 | MR

[8] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[9] Paltsev B. V., “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Matem. sb., 187:4 (1996), 59–116 | MR

[10] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[11] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR