@article{ZVMMF_1999_39_1_a12,
author = {S. P. Popov and F. G. Cheremisin},
title = {A conservative method for solving the {Boltzmann} equation with centrally symmetric interaction potentials},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {163--176},
year = {1999},
volume = {39},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_1_a12/}
}
TY - JOUR AU - S. P. Popov AU - F. G. Cheremisin TI - A conservative method for solving the Boltzmann equation with centrally symmetric interaction potentials JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1999 SP - 163 EP - 176 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_1_a12/ LA - ru ID - ZVMMF_1999_39_1_a12 ER -
%0 Journal Article %A S. P. Popov %A F. G. Cheremisin %T A conservative method for solving the Boltzmann equation with centrally symmetric interaction potentials %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1999 %P 163-176 %V 39 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_1_a12/ %G ru %F ZVMMF_1999_39_1_a12
S. P. Popov; F. G. Cheremisin. A conservative method for solving the Boltzmann equation with centrally symmetric interaction potentials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 1, pp. 163-176. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_1_a12/
[1] Cheremisin F. G., “Chislennye metody pryamogo resheniya kineticheskogo uravneniya Boltsmana”, Zh. vychisl. matem. i matem. fiz., 25:12 (1985), 1839–1855 | MR
[2] Aristov V. V., Cheremisin F. G., “Struktura udarnoi volny v odnoatomnom gaze pri stepennykh potentsialakh vzaimodeistviya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1982, no. 6, 179–183
[3] Postnova N. A., Cheremisin F. G., “Vychislenie integrala stolknovenii Boltsmana i reshenie zadachi ob odnorodnoi relaksatsii v gaze pri razlichnykh potentsialakh mezhmolekulyarnogo vzaimodeistviya”, Chisl. metody v dinamike razrezhennykh gazov, VTs AN SSSR, M., 1973 | MR
[4] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. RAN, 357:1 (1997), 1–4
[5] Tcheremissine F. G., “Conservative discrete ordinates method for solving of Boltzmann kinetic equation”, Proc. 20-th Intern. of Symp. in RGD, Peking Univ. Press, Beijing (China), 1997, 297–302
[6] Girshfelder Dzh., Kertis Ch., Berd R., Molekulyarnaya teoriya gazov i zhidkostei, Izd-vo inostr. lit., M., 1961
[7] Aristov V. V., Cheremisin F. G., Pryamoe chislennoe reshenie kineticheskogo uravneniya Boltsmana, VTs RAN, M., 1992 | MR
[8] Imamuro T., Sturtevant B., “Numerical study of discrete-velocity gases”, Rhys. Fluids, 2 (1990), 2196–2203 | DOI
[9] Rogier F., Schneider J., “A direct method for solving the Boltzmann equation”, Transport Theory and Statist. Phys., 23 (1994), 1–3 | DOI | MR | Zbl
[10] Buet G., “A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics”, Rarefied Gas Dynamics, 2 (1995), 815–812
[11] Tcheremissine F. G., Conservative discrete ordinates method for solving Boltzmann kinetic equation, VTs PAH, M., 1996
[12] Chepmen S., Kauling U., Matematicheskaya teoriya neodnorodnykh gazov, Izd-vo inostr. lit., M., 1960 | MR
[13] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Mir, M., 1989 | MR
[14] Alsmeyer H., “Density profiles in argon and nitrogen shock waves mesured by the absorption of an electron beam”, J. Fluid Mech., 74:3 (1976), 497–513 | DOI
[15] Munn R. J., Smith E. J., Mason E. A., “Transport collision integrals for quantum gases obeying a 12-6 potential”, J. Chem. Phys., 42 (1965), 597 | DOI
[16] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Fizmatgiz, M., 1963
[17] Popov S. P., Cheremisin F. G., Chislennoe reshenie uravneniya Boltsmana dlya kvantovogo gaza, VTs RAN, M., 1997