The Rayleigh function: Theory and methods for its calculation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 12, pp. 1962-2006 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_12_a3,
     author = {M. K. Kerimov},
     title = {The {Rayleigh} function: {Theory} and methods for its calculation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1962--2006},
     year = {1999},
     volume = {39},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_12_a3/}
}
TY  - JOUR
AU  - M. K. Kerimov
TI  - The Rayleigh function: Theory and methods for its calculation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1962
EP  - 2006
VL  - 39
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_12_a3/
LA  - ru
ID  - ZVMMF_1999_39_12_a3
ER  - 
%0 Journal Article
%A M. K. Kerimov
%T The Rayleigh function: Theory and methods for its calculation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1962-2006
%V 39
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_12_a3/
%G ru
%F ZVMMF_1999_39_12_a3
M. K. Kerimov. The Rayleigh function: Theory and methods for its calculation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 12, pp. 1962-2006. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_12_a3/

[1] Reyleigh Lord (Strutt J. W.), “Note on the numerical calculation of the roots of fluctuating functions”, Proc. London Math. Soc., 5 (1874), 112–194; Scient. Papers, v. 1, 1899, 190–195

[2] Watson G. N., A treatise on the theory of Bessel functions, Sec. ed., Cambridge Univ. Press, Cambridge, 1966 ; Vatson G. N., Teoriya besselevykh funktsii, v. I, Izd-vo inostr. lit., M., 1949, Perev. s angl. B. C. Bermana | MR

[3] Petiau G., La théorie des fonctions de Bessel, Centre Nat. Rech. Scient., Paris, 1955 | MR | Zbl

[4] Kishore Nand, “The Rayleigh function”, Proc. Amer. Math. Soc., 14:4 (1963), 527–533 | DOI | MR | Zbl

[5] Kapitsa P. L., “Teploprovodnost i diffuziya v zhidkoi srede pri periodicheskom techenii. I. Opredelenie velichiny koeffitsienta volnovogo perenosa v trube, v scheli i v kanale”, Zh. eksperim. i teor. fiz., 21:9 (1951), 964–978

[6] Kapitsa P. L., “Vychislenie summ otritsatelnykh chetnykh stepenei kornei besselevykh funktsii”, Dokl. AN SSSR, 77:4 (1951), 561–564

[7] Meiman N. N., “O rekurrentnykh formulakh dlya stepennykh summ nulei besselevykh funktsii”, Dokl. AN SSSR, 108:2 (1956), 190–193 | MR

[8] Kerimov M. K., “O nauchnoi deyatelnosti V. A. Ditkina v oblasti vychislitelnoi matematiki”, Analitich. i chisl. metody resheniya zadach matem. fiz., eds. A. A. Abramov, VTs AN SSSR, M., 1989, 28–40 | MR

[9] Kerimov M. K., “O vychislenii funktsii Releya”, Analitich. i chisl. metody resheniya zadach matem. fiz., eds. A. A. Abramov, VTs AN SSSR, M., 1989, 109–116 | MR

[10] Kerimov M. K., “O metodakh vychisleniya dzeta-funktsii Rimana i nekotorykh ee obobscheniyakh”, Zh. vychisl. matem. i matem. fiz., 20:6 (1980), 1580–1598 | MR

[11] Ditkin V. A., Karpov K. A., Kerimov M. K., “O vychislenii spetsialnykh funktsii”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1093–1104 | MR | Zbl

[12] Jacobi C. G. J., “Versuch nach einer Berechnung der grossen Ungleichheit der Saturn nach einer strengen Entwicklung”, Astron. Nachrichten, 28 (1849), 81–94 ; Gesammelte Werke, 7, Berlin, 1891, 145–174 | DOI

[13] Cayley A., “Addition to Lord Rayleigh's paper: On the numerical calculation of the roots of fluctuating functions”, Proc. London Math. Soc., 5 (1874), 123–124; Collected Papers, 9, 1896, 19–20

[14] Nielsen N., Handbuch der Theorie der Cylinderfunktionen, B. G. Teubrier, Leipzig, 1904 | Zbl

[15] Kapteyn W., “Sur le quotient de deux fonctions besseliennes successives”, Arch. Nederlandaises d. Sci. exactes et nat., 11 (1906), 149–168 | Zbl

[16] Forsyth A. R., “The expression of Bessel functions of positive order as products, and of their inverse powers as sume of rational functions”, Messenger Math., 50 (1920), 129–149 | Zbl

[17] Lehmer D. H., “Zeros of the Bessel function $J_\nu(x)$”, Math. Tables and Other Aids to Comput., 1:10 (1943–1945), 405–407 | MR

[18] Lamb H., “Note on the induction of electric currents in a cylinder places across the lines of magnetic force”, Proc. London Math. Soc., 5 (1884), 270–274

[19] Airey J. R., “Bessel functions of small fractional order and their applications to problems of elastic stability”, Philos. Mag., 41:6 (1921), 200–205 | Zbl

[20] Ismail M. E. H., Muldoon M. E., “On the variation with respect to a parameter of zeros of Bessel and $g$-Bessel functions”, J. Math. Analys. and Appl., 135:1 (1988), 187–207 | DOI | MR | Zbl

[21] M. Abramowitz and I. Stegun (eds.), Handbook of mathematical function with formulas, grafs and mathematical tables, Dover Publs, Inc., New York, 1965; Spravochnik matematicheskikh funktsii s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | Zbl

[22] Lehmer D. H., “On the maxima and minima of Bernoulli polynomials”, Amer. Math. Monthly, 47:8 (1940), 533–538 | DOI | MR | Zbl

[23] Kishore Nand, “A class bf formulas for the Rayleigh function”, Duke Math. J., 34:3 (1967), 573–579 | DOI | MR | Zbl

[24] Carlitz L., “Recurrences for the Rayleigh function”, Duke Math. J., 34:3 (1967), 581–590 | DOI | MR | Zbl

[25] Kishore Nand, “The Ralleigh polynomial”, Proc. Amer. Math. Soc., 15:6 (1964), 911–917 | DOI | MR | Zbl

[26] Kishore Nand, “A structlire of the Rayleigh polynomial”, Duke Math. J., 31:3 (1964), 513–518 | DOI | MR | Zbl

[27] Obi E. C., “A note on the Rayleigh polynomials”, SIAM J. Math. Analys., 9:5 (1978), 825–834 | DOI | MR | Zbl

[28] Kishore Nand, Lecture notes, Univ. of Toledo, Toledo, Ohio, USA, 1969

[29] Obi E. S., “Functional bounds, series, and log convexity of Rayleigh higher derivatives”, J. Math. Analys. and Appl., 52:3 (1975), 648–659 | DOI | MR | Zbl

[30] Kishore Nand, “A representation of trie Bernoulli number $B_n$”, Pacific J. Math., 14:4 (1964), 1297–1304 | MR | Zbl

[31] Carlitz L., “A sequence of integers related to the Bessel functions”, Proc. Amer. Math. Soc., 14:1 (1963), 1–9 | DOI | MR | Zbl

[32] Obi E. C., “The complete monotonicity of the Rayleigh function”, J. Math. Analys. and Appl., 77:2 (1980), 465–468 | DOI | MR | Zbl

[33] Obi E. C., “Some local properties of thd Rayleigh functions”, Bull. Calcutta Math. Soc., 75:1 (1983), 49–55 | MR | Zbl

[34] Carlitz L., “The coefficients of the reciprocal of $J_0(x)$”, Archiv der Math., 6:2 (1955), 121–127 | DOI | MR | Zbl

[35] Howard F. T., “Sums of powers of the zeros of the Bessel polynomials”, Mathematika, 37:74 (1990), 305–315, Part 2 | DOI | MR | Zbl

[36] Krall H. L., Fink O., “A new class of orthogonal polynomials: The Bessel polynomials”, Trans. Amer. Math. Soc., 65:1 (1949), 100–115 | DOI | MR | Zbl

[37] Grosswald E., Bessel polynomials, Lect. Notes in Math., 698, Springer, Berlin, 1978 | MR | Zbl

[38] Burchnall J. L., “The Bessel polinomials”, Canadian J. Math., 3:1 (1951), 62–68 | DOI | MR | Zbl

[39] Stolarsky K. B., “Singularities of Bessel zeta functions and Hawkins' polynomials”, Mathematika, 32:1 (1985), 96–103 | DOI | MR | Zbl

[40] Hawkins J., On a zeta function associated with Bessel's equation, Doct. Thesis, Univ. Illinois, USA, 1983, Tsitiruetsya na osnovanii [39]

[41] Comtet L., Advanced combinatorics, Reidel, Dordrecht-Boston, 1974 | MR | Zbl

[42] Ismail M. E. H., Kerker D. H., “The Bessel polynomials and the Student $t$ distribution”, SIAM J. Math. Analys., 7:1 (1976), 82–91 | DOI | MR | Zbl

[43] De Bruin M. G., Saff E. B., Varga R. S., “On the zeros of generalized Bessel polynomials. I, II”, Proc. Koninkl. Nederl. Akad. Wetensch. Ser. A: Math. Sciences, 43:1 (1981), 1–25 | MR

[44] Dochev K., “V'rkhu obobschenite polinomi na Besel”, Izvestiya na matem. in-t B'lgarska Akademiya naukite, 6 (1962), 89–94 (Bolgarsk. yaz.)

[45] Van der Poorten A. J., Tijdeman R., “On common zeros of exponential polynomials”, Enseignement Math., 21 (1975), 57–67 | MR | Zbl

[46] Luke Y. L., The special functions and their approximations, v. 2, Acad. Press, New York, 1969 | Zbl

[47] Howard F. T., “The sum of the $m$-th powers of the generalized Bessel polynomials”, J. Math. Analys. and Appl., 172:2 (1993), 432–451 | DOI | MR | Zbl