Numerical simulation of supersonic flow around slender bodies in a locally conical approximation of the
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 11, pp. 1895-1903 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_11_a8,
     author = {Yu. P. Golovach\"ev},
     title = {Numerical simulation of supersonic flow around slender bodies in a locally conical approximation of the},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1895--1903},
     year = {1999},
     volume = {39},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_11_a8/}
}
TY  - JOUR
AU  - Yu. P. Golovachëv
TI  - Numerical simulation of supersonic flow around slender bodies in a locally conical approximation of the
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1895
EP  - 1903
VL  - 39
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_11_a8/
LA  - ru
ID  - ZVMMF_1999_39_11_a8
ER  - 
%0 Journal Article
%A Yu. P. Golovachëv
%T Numerical simulation of supersonic flow around slender bodies in a locally conical approximation of the
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1895-1903
%V 39
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_11_a8/
%G ru
%F ZVMMF_1999_39_11_a8
Yu. P. Golovachëv. Numerical simulation of supersonic flow around slender bodies in a locally conical approximation of the. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 11, pp. 1895-1903. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_11_a8/

[1] Shvets A. I., “Issledovanie obtekaniya ellipticheskikh konusov”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1966, no. 1, 130–137

[2] Bazzhin A. P., Trusova O. P., Chelysheva N. F., “Raschet techenii sovershennogo gaza okolo ellipticheskikh konusov pri bolshikh uglakh ataki”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 10, 45–51

[3] Bashkin V. A., “Issledovanie teploobmena na ostrykh ellipticheskikh konusakh v sverkhzvukovom potoke pri bolshikh uglakh ataki”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1969, no. 1, 84–88

[4] Ivanov M. Ya., Kraiko A. N., “K raschetu sverkhzvukovogo obtekaniya konicheskikh tel”, Zh. vychisl. matem. i matem. fiz., 13:6 (1973), 1557–1572 | Zbl

[5] Allen J. M., Pittman J. L., “Analysis of surface pressure distributions on two elliptic missile bodies”, J. Spacecraft and Rockets, 21:6 (1984), 528–533 | DOI

[6] Newsome R. W., “Euler and Navier–Stokes solutions for flow over a conical delta wing”, AIAA J., 24:4 (1984), 552–561 | DOI

[7] Golovachev Yu. P., Chislennoe modelirovanie techenii vyazkogo gaza v udarnom sloe, Fizmatgiz, M., 1996 | Zbl

[8] Gorenbukh P. I., Korolev A. S., Provoshorov V. P., “Aerodinamicheskie kharakteristiki ostrykh ellipticheskikh konusov v vyazkom giperzvukovom potoke”, Izv. RAN. Mekhan. zhidkosti i gaza, 1996, no. 3, 109–114

[9] Sinha P. K., Sharma R. K., Nagarathinam M., “Computation of supersonic flow past elliptical bodies”, Proc. 7th Internat. Symp. on Comput. Fluid Dynamics, 1997, 744–749

[10] Golovachev Yu. P., Leonteva H. B., “Chislennoe issledovanie sverkhzvukovogo obtekaniya ostrykh ellipticheskikh konusov”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 534–542 | MR | Zbl

[11] Hankey W. L., Graham J. E., Shang J. S., “Navier–Stokes solution of a slender body of revolution at incidence”, AIAA J., 20:6 (1982), 776–781 | DOI | Zbl

[12] Newsome R. W., Walters R. W., Thomas J. L., An efficient iteration strategy for upwind/relaxation solutions to the thin-layer Navier–Stokes equations, AIAA Paper, No 87-1113, 1987

[13] Lawrence S. L., Chaussee D. S., Tannehill J. C., Application of an upwind algorithm to the three-dimensional parabolized Navier–Stokes equations, AIAA Paper, No 87-1112, 1987

[14] Spalart P. R., Allmaras S. R., A one-equation turbulence model for aerodynamic flows, AIAA Paper, No 92-0439, 1992 | Zbl

[15] Shur M. et al., Comparative numerical testing of one- and two-equation turbulence models for flows with separation and reattachment, AIAA Paper, No 95-0863, 1995

[16] Sekundov A. N., “Turbulentnost v sverkhzvukovom potoke i ee vzaimodeistvie s udarnoi volnoi”, Izv. RAN. Mekhan. zhidkosti i gaza, 1974, no. 2, 166–172

[17] Van Leer B., Thomas J. L., Roe P. L., Newsome R. W., A comparison of numerical flux formulas for the Euler and Navier–Stokes equations, AIAA Paper, No 87-1104, 1987

[18] Hanel D., Schwane R., Seider G., On the accuracy of upwind schemes for the solution of the Navier–Stokes equations, AIAA Paper, No 87-1105, 1987

[19] Hoffmann K. A., Papadakis M., Suzen Y. B., “Comparative analysis of Navier–Stokes solvers for high speed flows”, CFD Journal, 4:3 (1995), 333–352

[20] Gaitonde D., Shang J. S., “Accuracy of flux-split algorithms in high-speed viscous flows”, AIAA J., 31:7 (1993), 1215–1221 | DOI | Zbl

[21] Minailos A. N., “Tochnost chislennykh reshenii uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1220–1232 | MR | Zbl

[22] Hirsch C., Numerical computation of internal and external flows, J. Wiley and Sons, v. 2, New York, 1988

[23] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987 | MR

[24] Golovachev Yu. P., Leonteva N. V., “Chislennoe issledovanie poperechnogo otryva v prostranstvennykh sverkhzvukovykh techeniyakh okolo krugovykh konusov”, Zh. tekhn. fiz., 68:10 (1998), 20–26

[25] Adams M. C., Determination of shapes of boattail bodies of revolution for minimum wave drag, NACA TN, No 3054, 1953