A numerical solution to some three-parameter spectral problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 11, pp. 1787-1801 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1999_39_11_a1,
     author = {T. V. Levitina},
     title = {A numerical solution to some three-parameter spectral problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1787--1801},
     year = {1999},
     volume = {39},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_11_a1/}
}
TY  - JOUR
AU  - T. V. Levitina
TI  - A numerical solution to some three-parameter spectral problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1999
SP  - 1787
EP  - 1801
VL  - 39
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_11_a1/
LA  - ru
ID  - ZVMMF_1999_39_11_a1
ER  - 
%0 Journal Article
%A T. V. Levitina
%T A numerical solution to some three-parameter spectral problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1999
%P 1787-1801
%V 39
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_11_a1/
%G ru
%F ZVMMF_1999_39_11_a1
T. V. Levitina. A numerical solution to some three-parameter spectral problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 39 (1999) no. 11, pp. 1787-1801. http://geodesic.mathdoc.fr/item/ZVMMF_1999_39_11_a1/

[1] Blum E. K., Chang A. F., “A numerical method for the solution of the double eigenvalue problem”, J. Inst. Maths. Applies, 22 (1978), 29–42 | DOI | MR | Zbl

[2] Blum E. K., Curtis A. R., “A convergent gradient method for matrix eigenvector-eigentuple problems”, Numer. Math., 31 (1978), 231–246 | DOI | MR | Zbl

[3] Browne P. J., Sleeman B. D., “A numerical technique for multiparameter eigenvalue problems”, IMA J. Numer. Analys., 2 (1982), 451–457 | DOI | MR | Zbl

[4] Xingzi Ji., “A two-dimensional bisection method for solving two-parameter eigenvalue problems”, SIAM J. Matrix Analys. and Appl., 13:4 (1992), 1085–1093 | DOI | MR

[5] Abramov A. A., Ulyanova V. I., “O reshenii uravnenii dlya opredeleniya urovnei energii ionizirovannoi molekuly vodoroda”, Zh. vychisl. matem. i matem. fiz., 1:2 (1961), 351–354 | MR

[6] Bailey P. B., “The automatic solution of two-parameter Sturm–Liouville eigenvalue problems in ordinary differential equations”, Appl. Math. Comput., 8 (1981), 251–259 | DOI | MR | Zbl

[7] Abramov A. A., Dyshko A. L., Konyukhova N. B., Levitina T. V., “Vychislenie uglovykh funktsii Dame resheniem vspomogatelnykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 813–830 | MR

[8] Abramov A. A., “Metod resheniya nekotorykh mnogoparametricheskikh zadach na sobstvennye znacheniya, voznikayuschikh pri ispolzovanii metoda Fure”, Zh. vychisl. matem. i matem. fiz., 34:10 (1994), 1524–1527 | MR | Zbl

[9] Levitina T. V., “Ob usloviyakh primenimosti odnogo algoritma resheniya dvukhparametricheskikh samosopryazhennykh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 31:5 (1991), 689–697 | MR

[10] Levitina T., “On numerical solution of multiparameter Sturm–Liouville spectral problems”, Numer. Analys. Math. Modelling, 29 (1994), 275–281, Banach Center Publs, Warszawa | MR

[11] Levitina T., “Free acoustic oscillations inside a triaxial ellipsoid”, Design Engrig Techn. Conf., 3, ASME, New York, 1995, 449–454, Pt. B

[12] Abramov A. A., Ulyanova V. I., “Odin metod resheniya samosopryazhennykh mnogoparametricheskikh spektralnykh zadach dlya slabo svyazannykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 37:5 (1997), 566–571 | MR | Zbl

[13] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1967 | MR

[14] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR

[15] Vainshtein L. A., Otkrytye rezonatory i otkrytye volnovody, Sov. radio, M., 1966

[16] Abramov A. A., Dyshko A. L., Konyukhova N. B., Levitina T. V., “O chislenno-analiticheskom issledovanii zadach difraktsii ploskoi zvukovoi volny na idealnykh vytyanutykh sferoidakh i trekhosnykh ellipsoidakh”, Zh. vychisl. matem i matem. fiz., 35:9 (1995), 1374–1400 | MR | Zbl

[17] Volkmer H., Multiparameter eigenvalue problems and expansion theorems, Lectures Notes, Springer, Berlin, Heidelberg, 1988 | MR | Zbl

[18] Fedoryuk M. B., “Volnovoe uravnenie Lame”, Uspekhi matem. nauk, 44:1(265) (1989), 123–144 | MR | Zbl

[19] Richardson R. G. D., “Über die notwendingen und hinreichenden Bedingungen für das Bestehen eines Kleinschen Oszillations Theorems”, Math. Ann., 73 (1913), 289–304 | DOI | MR | Zbl

[20] Kitoroage D. I., Konyukhova N. B., Pariiskii B. S., “Modifitsirovannyi metod fazovykh funktsii v singulyarnykh zadachakh kvantovoi fiziki na svyazannye sostoyaniya chastits”, Soobsch. po prikl. matem., VTs AN SSSR, M., 1987

[21] Sleeman B. D., “Singular linear differential operators with many parameters”, Proc. Roy. Soc. Edinburgh. Sect. A, 71 (1973), 199–232 | MR | Zbl