A mathematical model for the problem of diffraction by an inhomogeneous cylindrical body
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 9, pp. 1563-1571 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_9_a14,
     author = {A. S. Il'inskii and Yu. Yu. Kapustin and A. B. Samokhin},
     title = {A mathematical model for the problem of diffraction by an inhomogeneous cylindrical body},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1563--1571},
     year = {1998},
     volume = {38},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_9_a14/}
}
TY  - JOUR
AU  - A. S. Il'inskii
AU  - Yu. Yu. Kapustin
AU  - A. B. Samokhin
TI  - A mathematical model for the problem of diffraction by an inhomogeneous cylindrical body
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1563
EP  - 1571
VL  - 38
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_9_a14/
LA  - ru
ID  - ZVMMF_1998_38_9_a14
ER  - 
%0 Journal Article
%A A. S. Il'inskii
%A Yu. Yu. Kapustin
%A A. B. Samokhin
%T A mathematical model for the problem of diffraction by an inhomogeneous cylindrical body
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1563-1571
%V 38
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_9_a14/
%G ru
%F ZVMMF_1998_38_9_a14
A. S. Il'inskii; Yu. Yu. Kapustin; A. B. Samokhin. A mathematical model for the problem of diffraction by an inhomogeneous cylindrical body. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 9, pp. 1563-1571. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_9_a14/

[1] Richmond J. H., “Scattering by a dielectric of arbitrary cross-section shape”, IEEE Trans., 13:3 (1965), 334–341 | DOI | MR

[2] Ilinskii A. S, Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[3] Samokhin A. B., “Difraktsiya elektromagnitnykh voln na lokalno-neodnorodnom tele i singulyarnye integralnye uravneniya”, Zh. vychisl. matem. i matem. fiz., 32:5 (1992), 772–783. | MR

[4] Sarkar T. K., Application of conjugate gradient method to electromagnetics and signal analysis, Elsevier, New York, 1991

[5] Kleinman R. E., Van der Berg P. M., “Iterative methods for radio-wave problems”, Rev. Radio Sci. 1990–1992, Oxford Univ. Press, Oxford, 1993

[6] Samokhin A. B., “Mnogoshagovyi metod minimalnykh nevyazok dlya resheniya lineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 31:2 (1991), 317–320 | MR

[7] Samokhin A. B., “Issledovanie zadach difraktsii elektromagnitnykh voln v lokalno-neodnorodnykh sredakh”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 107–121 | MR

[8] Ilinskii A. S., Nekrasov L. M., “Chislennyi metod resheniya zadachi difraktsii na neodnorodnom dielektricheskom tsilindre”, Zh. vychisl. matem. i matem. fiz., 35:1 (1995), 53–70 | MR

[9] Vasilev E. N., Solodukhov V. V., “Difraktsiya naklonno padayuschei elektromagnitnoi volny na dielektricheskom tsilindre proizvolnogo secheniya”, Vychisl. metody i programmirovanie, 20, Izd-vo MGU, M., 1971, 144–157

[10] Ilinskii A. S., Sveshnikov A. G., Chetyre lektsii po chislennym metodam teorii difraktsii, Izd-vo LGU, L., 1972

[11] Samokhin A. B., “Ob ispolzovanii iteratsionnogo metoda dlya resheniya vneshnikh zadach difraktsii”, Difraktsiya i rasprostranenie voln v neodnorodnykh sredakh, MFTI, M., 1987, 31–35