Algorithms for calculating continued fractions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 9, pp. 1436-1451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_9_a1,
     author = {B. P. Rusyn and V. S. Kachmar and V. I. Shmoilov},
     title = {Algorithms for calculating continued fractions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1436--1451},
     year = {1998},
     volume = {38},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_9_a1/}
}
TY  - JOUR
AU  - B. P. Rusyn
AU  - V. S. Kachmar
AU  - V. I. Shmoilov
TI  - Algorithms for calculating continued fractions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1436
EP  - 1451
VL  - 38
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_9_a1/
LA  - ru
ID  - ZVMMF_1998_38_9_a1
ER  - 
%0 Journal Article
%A B. P. Rusyn
%A V. S. Kachmar
%A V. I. Shmoilov
%T Algorithms for calculating continued fractions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1436-1451
%V 38
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_9_a1/
%G ru
%F ZVMMF_1998_38_9_a1
B. P. Rusyn; V. S. Kachmar; V. I. Shmoilov. Algorithms for calculating continued fractions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 9, pp. 1436-1451. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_9_a1/

[1] Dzhouns U., Tron V., Nepreryvnye drobi. Analiticheskaya teoriya i prilozheniya, Mir, M., 1985

[2] Beiker Dzh., ml., Greivs-Morris P., Approksimatsiya Pade, Mir, M., 1986

[3] Knut D., Iskusstvo programmirovaniya dlya EVM, v. 2, Poluchennye algoritmy, Mir, M., 1977 | Zbl

[4] Lorentzen L., Waadeland H., Continued fractions with applications, New York, 1992

[5] Khovanskii A. N., Primenenie tsepnykh drobei i ikh obobschenii k voprosam priblizhennogo analiza, Gostekhteorizdat, M., 1956

[6] Tseiten G., Istoriya matematiki v XVI i XVII vekakh, ONTI, M., 1938

[7] Euler L., “De fractionibus continuis observatione”, Communs. Acad. Sci. Imper. Petropol., 11 (1739), 32–81

[8] Brezinski C., History of continued fraction and Pade approxirnants, Springer, Berlin, 1991

[9] Perron O., Die Lehre von den Kettenbruchen, v. II, Teubner, Stuttgart, 1957 | Zbl

[10] Miln-Thomson L. M., “A matrix representation of ascending and descending continued fractions”, Proc. Edinburgh Math. Soc., 2:3 (1933), 189–200 | DOI | Zbl

[11] Rogers L., “On the representation of certain asymptotic series as convergent continued fractions”, Proc. London Math. Soc., 2:4 (1907), 72–89 | DOI

[12] Theichroew D., “Use of continued fraction in high speed computing”, Math. Tables and Other Aids Comput., 6:39 (1952), 127–132 | DOI

[13] Shmoilov V. I., Parallelnye algoritmy vychisleniya znachenii tsepnykh drobei, IPPMM NANU, Lvov, 1989

[14] Macon N., Baskervill M., “On the generation of error in the digital evaluation of continued fractions. I”, Assoc. Comput. Machinery, 3 (1956), 199–202 | MR

[15] Henrici P., Applied and computational complex analysis, v. 2, Wiley, New York, 1977 | Zbl

[16] Skorobogatko V. Ya., Teoriya vetvyaschikhsya tsepnykh drobei i ee primenenie v vychislitelnoi matematike, Nauka, M., 1983

[17] Blanch G., “Numerical evaluations of continued fractions”, SIAM Rev., 7 (1964), 383–421 | DOI | MR