Numerical solution of the problems of scattering by Platonic bodies in the classes of functions invariant under symmetry transformations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 8, pp. 1301-1313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_8_a6,
     author = {I. A. Zagorodnov and R. P. Tarasov},
     title = {Numerical solution of the problems of scattering by {Platonic} bodies in the classes of functions invariant under symmetry transformations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1301--1313},
     year = {1998},
     volume = {38},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_8_a6/}
}
TY  - JOUR
AU  - I. A. Zagorodnov
AU  - R. P. Tarasov
TI  - Numerical solution of the problems of scattering by Platonic bodies in the classes of functions invariant under symmetry transformations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1301
EP  - 1313
VL  - 38
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_8_a6/
LA  - ru
ID  - ZVMMF_1998_38_8_a6
ER  - 
%0 Journal Article
%A I. A. Zagorodnov
%A R. P. Tarasov
%T Numerical solution of the problems of scattering by Platonic bodies in the classes of functions invariant under symmetry transformations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1301-1313
%V 38
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_8_a6/
%G ru
%F ZVMMF_1998_38_8_a6
I. A. Zagorodnov; R. P. Tarasov. Numerical solution of the problems of scattering by Platonic bodies in the classes of functions invariant under symmetry transformations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 8, pp. 1301-1313. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_8_a6/

[1] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[2] Taflove A., Umashankar K. R., “Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section”, Proc. IEEE, 77:5 (1989), 682–699 | DOI

[3] Penno R. P., Thiele G. A., Pasala K. M., “Scattering from a perfectly conducting cube”, Proc. IEEE, 77:5 (1989), 815–823 | DOI

[4] Tarasov P. P., “Garmonicheskii analiz na konechnykh gruppakh i metody chislennogo resheniya granichnykh uravnenii v kraevykh zadachakh s neabelevoi gruppoi simmetrii”, Zh. vychisl. matem. i matem. fiz., 32:9 (1992), 1515–1517 | Zbl

[5] Tarasov R. P., “Chislennoe reshenie uravnenii tipa svertki na konechnykh nekommutativnykh gruppakh”, Zh. vychisl. matem. i matem. fiz., 33:7 (1993), 1030–1042 | MR | Zbl

[6] Zagorodnov I. A., Tarasov R. P., “Zadacha difraktsii na telakh s nekommutativnoi konechnoi gruppoi simmetrii i chislennoe ee reshenie”, Zh. vychisl. matem. i matem. fiz., 37:10 (1997), 1246–1262 | MR | Zbl

[7] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978 | Zbl

[8] Vasilev E. N., Vozbuzhdenie tel vrascheniya, Radio i svyaz, M., 1988

[9] Tsishang X., Fogt E., Koldevai Kh. D., Poverkhnosti i razryvnye gruppy, Nauka, M., 1988

[10] Kholl M., Teoriya grupp, Izd-vo inostr. lit., M., 1962

[11] Naimark M. A., Teoriya predstavlenii grupp, Nauka, M., 1976

[12] Cote M. G., Woodworth M. B., Yaghjian A. D, “Scattering from the perfectly conducting cube”, IEEE Trans. Antennas and Propag., 36:9 (1988), 1321–1329 | DOI

[13] Harrington R. F., Field computation by moment methods, Macmillan, New York, 1968

[14] Gelfand I. M., Shilov G. E., Obobschennye funktsii, v. 1, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[15] Voevodin V. V., Sveshnikov A. G., Tyrtyshnikov E. E., “Effektivnyi chislennyi metod resheniya integralnykh uravnenii vtorogo roda v zadachakh elektrodinamiki”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1980, no. 1, 14–26 | MR | Zbl

[16] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987

[17] Serr Zh.-P., Lineinye predstavleniya konechnykh grupp, Mir, M., 1970 | Zbl