Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 8, pp. 1355-1367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_8_a10,
     author = {V. V. Ostapenko},
     title = {Finite-difference approximation of the {Hugoniot} conditions on a shock front propagating with variable velocity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1355--1367},
     year = {1998},
     volume = {38},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_8_a10/}
}
TY  - JOUR
AU  - V. V. Ostapenko
TI  - Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1355
EP  - 1367
VL  - 38
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_8_a10/
LA  - ru
ID  - ZVMMF_1998_38_8_a10
ER  - 
%0 Journal Article
%A V. V. Ostapenko
%T Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1355-1367
%V 38
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_8_a10/
%G ru
%F ZVMMF_1998_38_8_a10
V. V. Ostapenko. Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 8, pp. 1355-1367. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_8_a10/

[1] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | Zbl

[2] Rozhdestvenskii B. L., Yanenko H. H., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978

[3] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1993

[4] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980

[5] Goldin V. Ya., Kalitkin N. N., Shitova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 938–944 | MR

[6] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl

[7] Kalgan V. P., “Primenenie operatorov sglazhivaniya v raznostnykh skhemakh vysokogo poryadka tochnosti”, Zh. vychisl. matem. i matem. fiz., 18:5 (1978), 1340–1345 | MR

[8] Kholodov A. S., “O postroenii raznostnykh skhem povyshennogo poryadka tochnosti dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 20:6 (1980), 1601–1620 | MR | Zbl

[9] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR

[10] Harten A., “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM. J. Numer. Analys., 21:1 (1984), 1–23 | DOI | MR

[11] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990

[12] Pinchukov V. I., “O postroenii monotonnykh skhem tipa prediktor-korrektor proizvolnogo poryadka approksimatsii”, Matem. modelirovanie, 3:9 (1991), 95–103 | MR | Zbl

[13] Ostapenko V. V., “O povyshenii poryadka slaboi approksimatsii zakonov sokhraneniya na razryvnykh resheniyakh”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 146–157 | MR | Zbl

[14] Godunov S. K., Ryabenkii B. C., Raznostnye skhemy, Nauka, M., 1978

[15] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya (primenenie k gazovoi dinamike), Nauka, Novosibirsk, 1985 | Zbl

[16] Ostapenko V. V., “O skhodimosti raznostnykh skhem za frontom nestatsionarnoi udarnoi volny”, Zh. vychisl. matem. i matem. fiz., 37:10 (1997), 1201–1212 | MR | Zbl

[17] Carpenter M. N., Casper J., “Computational considerations for the simulations of discontinuos flows”, Barriers and Challenges Comput. Fluid Dynamics, Kluwer Acad. Publ., New York, 1997

[18] Casper J., Carpenter M. N., “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:1 (1998) | MR | Zbl

[19] Ostapenko V. V., “O lokalnom vypolnenii zakonov sokhraneniya na fronte “razmazannoi” udarnoi volny”, Matem. modelirovanie, 2:7 (1990), 129–138 | MR | Zbl

[20] Vorozhtsov E. V., Yanenko N. N., Metody lokalizatsii osobennostei pri chislennom reshenii zadach gidrodinamiki, Nauka, Novosibirsk, 1985 | Zbl