@article{ZVMMF_1998_38_7_a16,
author = {A. N. Minailos},
title = {The accuracy of numerical solutions to the {Navier{\textendash}Stokes} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1220--1232},
year = {1998},
volume = {38},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_7_a16/}
}
TY - JOUR AU - A. N. Minailos TI - The accuracy of numerical solutions to the Navier–Stokes equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 1220 EP - 1232 VL - 38 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_7_a16/ LA - ru ID - ZVMMF_1998_38_7_a16 ER -
A. N. Minailos. The accuracy of numerical solutions to the Navier–Stokes equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 7, pp. 1220-1232. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_7_a16/
[1] MacCormack R. W., Status and future prospects of using numerical methods to study complex flow at high Reynolds numbers, AGARD-LS-94, 1978, 13.1–13.14
[2] Chapman D. R., Computational aerodynamics development and outlook, AIAA Paper, No 0129, 1979, 29 pp.
[3] Shang J. S., “An assessment of numerical solutions of the compressible Navier–Stokes equations”, J. Aircraft., 22:5 (1985), 353–370 | DOI
[4] Golovachev Yu. P., Minailos A. N., “Problemy chislennogo modelirovaniya sverkhzvukovykh techenii vyazkogo gaza”, Modelirovanie v mekhan., 1(18):5 (1987), 14–34
[5] Landahl M. T., “CFD and turbulence”, 17th ICAS Congress. ICAS-90-0.1, 1990, 30–39
[6] Belotserkovskii O. M., Severinov L. I., “Konservativnyi metod “potokov” i raschet obtekaniya tela konechnykh razmerov vyazkim teploprovodnym gazom”, Zh. vychisl. matem. i matem. fiz., 13:2 (1973), 385–397
[7] Pavlov B. M., “Chislennoe issledovanie sverkhzvukovogo obtekaniya zatuplennykh tel potokom vyazkogo gaza”, Nekotorye primeneniya metoda setok v gazovoi dinamike, 4, Izd-vo MGU, M., 1971, 181–287
[8] Molodtsov V. K., “Chislennyi raschet sverkhzvukovogo obtekaniya sfery potokom vyazkogo sovershennogo gaza”, Zh. vychisl. matem. i matem. fiz., 9:5 (1969), 1211–1217 | Zbl
[9] Babakov A. V., Chislennoe modelirovanie nekotorykh zadach aerogidrodinamiki, VTs AN SSSR, M., 1986
[10] Severinov L. I., “O primenenii zakonov izmeneniya kolichestvennykh mer dvizheniya dlya konechnogo ob'ema v konechnykh prirascheniyakh pri chislennom reshenii zadach mekhaniki sploshnoi sredy”, Probl. aksiomatiki v razvitii protsessov. Vvodnye predstavleniya. V poryadke obsuzhdeniya, Tr. firmy “Sistem-prognoz”, M., 1993, 66–95
[11] MacCormak R. W., The effect of viscosity in hypervelosity impact cratering, AIAA Paper, No 354, 1969, 28 pp.
[12] Ivanov M. Ya., Kraiko A. H., “Ob approksimatsii razryvnykh reshenii pri ispolzovanii raznostnykh skhem skvoznogo scheta”, Zh. vychisl. matem. i matem. fiz., 18:3 (1978), 780–783
[13] Kraiko A. N., Polyanskii A. R., Tillyaeva N. I., “K skvoznomu schetu techenii s udarnymi volnami”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 137–142 | MR
[14] Minailos A. N. Poryadok approksimatsii i raschet kineticheskoi energii v yacheike v vychislitelnoi aerogidrodinamike, XX nauchnye chteniya po kosmonavtike. Tezisy dokl., RAN. Komissiya po razrabotke nauchnogo naslediya pionerov osvoeniya kosmich. prostranstva, M., 1996, 60 | Zbl
[15] Ostapenko V. V., “O povyshenii poryadka slaboi approksimatsii zakonov sokhraneniya na razryvnykh resheniyakh”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 146–157 | MR | Zbl
[16] Richards C. W., Crane C. M., “The accuracy of finite difference schemes for the numerical solution of the Navier–Stokes equations”, Appl. Math. Modelling, 3 (1979), 205–211 | DOI | Zbl
[17] Hanel D., Schwane R., Seider G., “On the accuracy of upwind schemes for the solution of the Navier–Stokes equations”, 8th Comput. Fluid Dynamic Conf. Honolulu No 1105 (Hawaii, 1987), 42–46
[18] Barton Dzh., Pulliam T., “Vliyanie vyazkosti i pogreshnostei, svoistvennykh chislennym metodam, na rezultaty rascheta obtekaniya profilya pri bolshikh uglakh ataki”, Aerokosmich. tekhn., 1987, no. 2, 153–163
[19] Kopchenov V. I., Kraiko A. N., Levin M. P., “K ispolzovaniyu suschestvenno neravnomernykh setok pri chislennom reshenii uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1457–1467 | MR
[20] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974
[21] Garbuzov V. M., Kolina N. P., Pyatnova A. I., “Raschet koeffitsientov soprotivleniya treniya i teploperedachi plastiny i ostrogo konusa, obtekaemogo sverkhzvukovym potokom, pri turbulentnom techenii v pogranichnom sloe”, Tr. TsAGI, 1881, M., 1977, 67–129
[22] Bashkin V. A., Kolina N. P., “Raschet soprotivleniya treniya i teplovogo potoka na sfericheski zatuplennykh krugovykh konusakh v sverkhzvukovom potoke”, Tr. TsAGI, 1106, M., 1968, 192–267
[23] Warming R.F., Kutler P., Lomax H., “Second and third-order noncentered difference schemes for Nonlinear hypersonic equations”, AIAA Journal, 11:2 (1973), 189–196 | DOI | MR | Zbl
[24] Kutler P., Warming R. F., Lomax H., “Computation of Space Shuttle Flowfields Using Noncenteres Finite-Difference Schemes”, AIAA Journal, 11:2 (1973), 196–204 | DOI | MR | Zbl
[25] Bardina J., Lombard C. K., Three dimensional hypersonic flow simulations with the CSCM implicit upwind Navier–Stokes method, AIAA Paper, No 1114, 1987, 10 pp.
[26] Wanie K. M., Schmatz M. A., Numerical analysis of viscous hypersonic flow past a generic forebody, ICAS-90-6.7.2, 1990, 1405–1414 | Zbl
[27] Tannehill J. C., Buelow P. E., Ievalts J. O., Lawrence S. L., A tree-Dimensional upwind parabolized Navier–Stokes code for real gas flow, AIAA Paper, No 1651, 1989, 14 pp. | Zbl
[28] Buelow P. E., Tannehill J. C., Ievalts J. O., Lawrence S. L., “Three-dimensional, upwind, parabolized Navier–Stokes code for chemically reacting flows”, J. Termophys. and Heat Transfer, 5:3 (1991), 274–283 | DOI
[29] Qin N., Wang Z., Richards B., Numerical experiments using Navier-Stokes codes for generalized hypersonic shapes, ICAS-90-3.10.4, 1990, 1927–1944
[30] Thomas P. D., Neier K. L., Navier–Stokes simulation of 3D hypersonic equilibrium flows with ablation, AIAA Paper, No 1650, 1989, 11 pp.
[31] Tomas Dzh. L., Uolters P. U., “Relaksatsionnye skhemy s raznostyami protiv potoka dlya uravnenii Nave–Stoksa”, Aerokosmich. tekhn., 1988, no. 2, 13–23
[32] Candler G. V., MacCormack R. W., Hypersonic flow past 3D configurations, AIAA Paper, No 0480, 1987, 11 pp.
[33] Egorov I. V., Ivanov D. V., “Modelirovanie vnutrennikh otryvnykh techenii s uchetom khimicheskoi neravnovesnosti”, Zh. vychisl. matem. i matem. fiz., 37:6 (1997), 751–758 | MR | Zbl
[34] Byrkin A. P., Timofeeva T. A., Tolstykh A. I., “Primenenie kompaktnykh skhem tretego-chetvertogo poryadka dlya rascheta techeniya gaza v soplakh s bolshimi sverkhzvukovymi chislami M na osnove uproschennykh uravnenii Nave–Stoksa”, Uch. zap. TsAGI, 19:6 (1988), 28–39
[35] Byrkin A. P., Tolstykh A. I., “Kompaktnye skhemy tretego i chetvertogo poryadkov v zadachakh o vnutrennikh techeniyakh vyazkogo i nevyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1234–1251 | MR | Zbl
[36] Tolstykh A. I., “New line of development of compjact upwind method for CFD”, Internat. Open Workshop (IOW95) Actual Problems of Comput. Mech. and Parallel Modeling. Programme (October 16–20, 1995), Inst. Comput. Aided Desing RAS, Moscow, Russia
[37] Chernyi G. G., Techeniya gaza s bolshoi sverkhzvukovoi skorostyu, Fizmatgiz, M., 1959
[38] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Atomizdat, M., 1984
[39] Berezin Yu. A., Chislennoe issledovanie nelineinykh voln v razrezhennoi plazme, Nauka, Novosibirsk, 1977
[40] Karpman V. I., Nelineinye volny v dispergiruyuschikh sredakh, Nauka, M., 1973
[41] Macaraeg M. G., Street C. L., Hussaini M. Y., “Analysis of artifical viscosity effects on reacting flows using a spectral multidomain technique”, J. Thermophys. and Heat Transfer, 3:1 (1989), 13–18 | DOI
[42] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 156–157
[43] Thomas P. D., Lombard C. K., “Geometric conservation low and its application to flow computations on moving grids”, AIAA Journal, 17:10 (1979), 1030–1037 | DOI | Zbl
[44] Hindman R. G., Geometrically induced errors and their relationship to the form of the governing equations and the treatment of generalized mapping, AIAA Paper, No 1008, 1981