The regularized constraint aggregation method for a problem of semi-infinite optimization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 5, pp. 770-776 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_5_a8,
     author = {M. R. Davidson},
     title = {The regularized constraint aggregation method for a problem of semi-infinite optimization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {770--776},
     year = {1998},
     volume = {38},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a8/}
}
TY  - JOUR
AU  - M. R. Davidson
TI  - The regularized constraint aggregation method for a problem of semi-infinite optimization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 770
EP  - 776
VL  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a8/
LA  - ru
ID  - ZVMMF_1998_38_5_a8
ER  - 
%0 Journal Article
%A M. R. Davidson
%T The regularized constraint aggregation method for a problem of semi-infinite optimization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 770-776
%V 38
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a8/
%G ru
%F ZVMMF_1998_38_5_a8
M. R. Davidson. The regularized constraint aggregation method for a problem of semi-infinite optimization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 5, pp. 770-776. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a8/

[1] R. Hettich (ed.), Semi-infinite programming, Lect. Notes in Control and Information Sci., 15, Springer, New York, 1979 | Zbl

[2] A. Fiacco, K. Kortanek (eds.), Semi-infinite programming and applications, Lect. Notes in Econom. and Math. Systems, 215, Springer, New York, 1983 | MR | Zbl

[3] Hettich R., “An implementation of a discretization method for semi-infinite programming”, Math. Program., 34 (1986), 354–361 | DOI | MR | Zbl

[4] Wardi Y., “A stochastic algorithm for optimization problems with continua of inequalities”, J. Optimizat. Theory and Appl., 56 (1988), 285–311 | DOI | MR | Zbl

[5] Wardi Y., “Stochastic approximation algorithm for minimax problems”, J. Optimizat. Theory and Appl., 64 (1990), 615–640 | DOI | MR | Zbl

[6] Zavriev S. K., “Subgradientnye metody v dvukhshagovoi leksikograficheskoi optimizatsii dlya zadachi s beskonechnym chislom ogranichenii”, Vychisl. matem. i modelirovanie, 1, Izd-vo MGU, M., 1990, 383–394

[7] Novikova N. M., “Iterative stochastic methods for solving variational problems of mathematical physics and operations research”, J. Math. Sciences, 68:1 (1994), 1–124 ; Contemprorary Math. and Its Applic., 3, Plenum Publ. Co, New York–London | DOI | MR | Zbl

[8] Ermoliev Yu. M., Kryazhimskii A., Ruszczynski A., Constraint aggregation principle in convex optimization, Paper WP-95-015, IIASA, Laxenburg, 1995

[9] Davidson M., Proximal point mappings and constraint aggregation principle, Paper WP-96-102, IIASA, Laxenburg, 1996

[10] Wasan M. T., Stochastic approximation, Cambridge Univ. Press, Cambridge, 1969 | Zbl