Solution of the equations of a nonequilibrium viscous shock layer for blunt bodies with catalytic surfaces
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 5, pp. 860-869 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_5_a17,
     author = {V. Yu. Kazakov and S. V. Peigin and S. V. Timchenko},
     title = {Solution of the equations of a nonequilibrium viscous shock layer for blunt bodies with catalytic surfaces},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {860--869},
     year = {1998},
     volume = {38},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a17/}
}
TY  - JOUR
AU  - V. Yu. Kazakov
AU  - S. V. Peigin
AU  - S. V. Timchenko
TI  - Solution of the equations of a nonequilibrium viscous shock layer for blunt bodies with catalytic surfaces
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 860
EP  - 869
VL  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a17/
LA  - ru
ID  - ZVMMF_1998_38_5_a17
ER  - 
%0 Journal Article
%A V. Yu. Kazakov
%A S. V. Peigin
%A S. V. Timchenko
%T Solution of the equations of a nonequilibrium viscous shock layer for blunt bodies with catalytic surfaces
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 860-869
%V 38
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a17/
%G ru
%F ZVMMF_1998_38_5_a17
V. Yu. Kazakov; S. V. Peigin; S. V. Timchenko. Solution of the equations of a nonequilibrium viscous shock layer for blunt bodies with catalytic surfaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 5, pp. 860-869. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a17/

[1] Golovachev Yu. P., Chislennoe modelirovanie techenii vyazkogo gaza v udarnom sloe, Nauka, M., 1996 | Zbl

[2] Golovachev Yu. P., “Raschet obtekaniya zatuplennykh tel neravnovesnymi gazovymi smesyami na osnove uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 18:5 (1978), 1266–1274

[3] Afonina N. E., Gromov V. G., “Vyazkoe obtekanie zatuplennogo konusa uglekislym gazom”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1978, no. 4, 102–105

[4] Golovachev Yu. P., Leonteva N. V., “Neravnovesnoe obtekanie zatuplennykh tel giperzvukovym potokom vozdukha”, Uch. zap. TsAGI, 13:5 (1982), 40–48

[5] Afonina N. E., Vlasov A. Yu., Gromov V. G., “Chislennoe issledovanie teploobmena na poverkhnosti treugolnogo kryla, obtekaemogo giperzvukovym potokom vozdukha pod bolshimi uglami ataki”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1984, no. 5, 196–199

[6] Kutler P., A perspective of theoretical and applied computational fluid dynamics, AIAA Paper No 83-37, 1983

[7] Peigin S. V., Tirskii G. A., Gershbein E. A. et al., Super- and hypersonic aerodynamics and heat transfer, CRC Press, New York, 1993

[8] Rubin S. G., Knosla P. K., “Polinomial interpolation methods for viscous flow calculations”, J. Comput. Phys., 24:3 (1977), 217–244 | DOI | Zbl

[9] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990

[10] Gershbein E. A., Scherbak V. G., “Issledovanie giperzvukovogo prostranstvennogo obtekaniya zatuplennykh tel v ramkakh parabolizovannykh uravnenii Nave–Stoksa”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1987, no. 4, 134–142

[11] Peigin S. V., “Chislennyi metod povyshennogo poryadka approksimatsii dlya resheniya dvumernykh zadach teorii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 27:6 (1987), 952–954

[12] Tirskii G. A., “Sovremennye gazodinamicheskie modeli v zadachakh sverkh- i giperzvukovoi aerodinamiki i teploobmena”, Izv. vuzov. Fizika, 36:4 (1993), 15–29 | MR

[13] Petukhov I. V., “Chislennyi raschet dvumernykh techenii v pogranichnom sloe”, Chisl. metody resheniya differents. i integr. ur-nii i kvadraturnye formuly, Izd-vo AN SSSR, M., 1964, 305–325

[14] Borodin A. I., Ivanov V. A., Peigin S. V., “Chislennoe issledovanie sverkhzvukovogo obtekaniya zatuplennykh tel v ramkakh modeli vyazkogo udarnogo sloya”, Zh. vychisl. matem. i matem. fiz., 36:8 (1996), 158–169 | MR

[15] Cheng H. K., “Hypersonic shock-layer theory of the stagnation region at low Reynolds number”, Proc. Heat Transfer and Fluid Mech. Inst. Stanford, 1961, 161–175 | Zbl

[16] Peigin S. V., Tirskii G. A., “Trekhmernye zadachi sverkh- i giperzvukovogo obtekaniya tel potokom vyazkogo gaza”, Itogi nauki i tekhn. VINITI. Ser. mekhan. zhidkosti i gaza, 22, 1988, 62–177 | MR

[17] Gershbein E. A., Peigin S. V., Tirskii G. A., “Sverkhzvukovoe obtekanie tel pri malykh i umerennykh chislakh Reinoldsa”, Itogi nauki i tekhn. VINITI. Ser. mekhan. zhidkosti i gaza, 19, 1985, 3–85

[18] Miner E. W., Lewis C. H., Hypersonic ionizing air viscous shock-layers over nonanalytic blunt bodies, NASA-CR, No 2550, 1975

[19] Wilke C. R., “A viscosity equation gas mixtures”, J. Chem. Phys., 18:4 (1959), 517–519 | DOI

[20] Mason E. A., Saxena S. C., “Approximate formula for the thermal conductivity”, Phys. Fluids, 1:5 (1958) | DOI

[21] Gurvich L. V., Veits I. A., Medvedev V. A., Termodinamicheskie svoistva individualnykh veschestv, Kn. 2, v. 1, M., 1978

[22] Tong H., Buckingham A. C., Curry D. M., Computational procedure for evaluation of space shuttle TPS requirements, AIAA Paper No 74-518, 1974

[23] Gershbein E. A., “Laminarnyi mnogokomponentnyi pogranichnyi sloi pri bolshikh vduvakh”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1970, no. 1, 64–73

[24] Vasilevskii S. A., Tirskii G. A., Utyuzhnikov S. V., “Chislennyi metod resheniya uravnenii vyazkogo udarnogo sloya”, Zh. vychisl. matem. i matem. fiz., 27:5 (1987), 741–750

[25] Masek R. V., Hender D., Forney J. A., Evaluation of Aerodynamic Uncertanties for Space Shuttle, AIAA Paper, No 73-737, 1973

[26] The first US-european high-velocity database workshop, T12-95 OREX, Houston, USA, 1995

[27] Borodin A. I., Kazakov V. Yu., Peigin S. V., “Mnogokomponentnyi prostranstvennyi vyazkii udarnyi sloi na zatuplennykh telakh s kataliticheskoi poverkhnostyu, obtekaemykh pod uglami ataki i skolzheniya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1990, no. 1, 143–150 | MR

[28] Borodin A. I., Kazakov V. Yu., Peigin S. V., “Modelirovanie mnogokomponentnykh khimicheski neravnovesnykh techenii v ramkakh modeli parabolizovannogo vyazkogo udarnogo sloya”, Matem. modelirovanie, 8:10 (1996), 3–14 | Zbl

[29] Gershbein E. A., “Asimptoticheskoe issledovanie zadachi prostranstvennogo obtekaniya vyazkim gazom zatuplennykh tel s pronitsaemoi poverkhnostyu”, Giperzvukovye prostranstvennye techeniya pri nalichii fiz.-khim. prevraschenii, Izd-vo MGU, M., 1981, 29–51

[30] Keller H. B., “A new difference scheme for parabolic problems”, Numer. Solutions Partial Differential Equations, v. 2, Acad. Press, New York, 1970