@article{ZVMMF_1998_38_5_a0,
author = {Kh. D. Ikramov},
title = {On the pseudounitary $QR$ algorithm for {pseudo-Hermitian} matrices},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {709--712},
year = {1998},
volume = {38},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a0/}
}
Kh. D. Ikramov. On the pseudounitary $QR$ algorithm for pseudo-Hermitian matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 5, pp. 709-712. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_5_a0/
[1] Fong S. K., Wu P. Y., “Band-diagonal operators”, Linear Algebra Appl., 248 (1996), 185–204 | DOI | MR | Zbl
[2] Longstaff W. E., “On tridiagonalization of matrices”, Linear Algebra Appl., 109 (1988), 153–163 | DOI | MR | Zbl
[3] Sturmfels B., “Tridiagonalization of complex matrices and a problem of Longstaff”, Linear Algebra Appl., 109 (1988), 165–166 | DOI | MR | Zbl
[4] George A., Ikramov Kh. D., Krivoshapova A. N., Tang W.-P., “A finite procedure for the tridiagonalization of a general matrix”, SIAM J. Matrix. Analys. Appl., 16:2 (1995), 377–387 | DOI | Zbl
[5] Eisner L., Ikramov Kh. D., “On a condensed form for fiormal matrices under finite sequences of elementary unitary similarities”, Linear Algebra Appl., 252 (1997), 79–98 | DOI
[6] Veselić K., “On optimal linearisations of a quadratic eigenvalue problem”, Linear and Multilinear Algebra, 8:3 (1980), 253–258 | DOI | MR | Zbl
[7] Ran A. C. M., “Unitary solutions of a class of algebraic Riccati equations and factorization”, Linear Algebra Appl., 162–164 (1992), 521–540 | DOI | MR | Zbl
[8] Ikramov Kh. D., “O psevdosimmetrichnykh trekhdiagonalnykh formakh veschestvennykh matrits”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1997, no. 1, 3–5