@article{ZVMMF_1998_38_4_a8,
author = {M. V. Bulatov},
title = {Numerical solution of a system of {Volterra} equations of the first kind},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {607--611},
year = {1998},
volume = {38},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a8/}
}
TY - JOUR AU - M. V. Bulatov TI - Numerical solution of a system of Volterra equations of the first kind JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 607 EP - 611 VL - 38 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a8/ LA - ru ID - ZVMMF_1998_38_4_a8 ER -
M. V. Bulatov. Numerical solution of a system of Volterra equations of the first kind. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 4, pp. 607-611. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a8/
[1] Apartsin A. S., “Diskretizatsionnye metody regulyarizatsii nekotorykh integralnykh uravnenii Volterra 1-go roda”, Metody chisl. analiza i optimizatsii, Nauka, Novosibirsk, 1987, 263–297 | MR
[2] Brunner H., van der Houwen P. J., The numerical solution of Volterra equations, CWI Monographs, 3, North-Holland, Amsterdam, 1986 | MR | Zbl
[3] Chistyakov V. F., “O singulyarnykh sistema obyknovennykh differentsialnykh uravnenii i ikh integralnykh analogakh”, Funktsii Lyapunova i ikh primeneniya, Nauka, Novosibirsk, 1987, 231–240
[4] Boyarintsev Yu. E., Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1980 | Zbl
[5] Bulatov M. V., “O vyrozhdennykh sistemakh integralnykh uravnenii tipa Volterra”, Integr. ur-niya i kraevye zadachi matem. fiz., Ch. 2, Vladivostok, 1992, 18–22 | MR
[6] Gantmakher F. N., Teoriya matrits, Nauka, M., 1966
[7] Apartsin A. S., Bakushinskii A. B., “Priblizhennoe reshenie integralnykh uravnenii Volterra I roda metodom kvadraturnykh summ”, Differents. i integr. ur-niya, 1, Irkutsk, 1972, 248–258
[8] Linz P., “Numerical methods for Volterra integral equations of the first kind”, Comput. J., 12:4 (1969), 393–397 | DOI | MR | Zbl