Berge convergence of the penalty function method with respect to the argument
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 4, pp. 573-589 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_4_a4,
     author = {V. G. Andronov and E. G. Belousov},
     title = {Berge convergence of the penalty function method with respect to the argument},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {573--589},
     year = {1998},
     volume = {38},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a4/}
}
TY  - JOUR
AU  - V. G. Andronov
AU  - E. G. Belousov
TI  - Berge convergence of the penalty function method with respect to the argument
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 573
EP  - 589
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a4/
LA  - ru
ID  - ZVMMF_1998_38_4_a4
ER  - 
%0 Journal Article
%A V. G. Andronov
%A E. G. Belousov
%T Berge convergence of the penalty function method with respect to the argument
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 573-589
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a4/
%G ru
%F ZVMMF_1998_38_4_a4
V. G. Andronov; E. G. Belousov. Berge convergence of the penalty function method with respect to the argument. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 4, pp. 573-589. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a4/

[1] Kummer B., Stability and weak duality in convex programming without regularity, Preprint, Humboldt-Univ, Berlin, 1978, 15 pp.

[2] Bank B., Guddat J., Klatte D., et al., Non-linear parametric optimization, Akad.-Verl., Berlin, 1982

[3] Belousov E. G., Andronov V. G., Razreshimost i ustoichivost zadach polinomialnogo programmirovaniya, Izd-vo MGU, M., 1993 | Zbl

[4] Eremin I. I., “Metod shtrafov v “vypuklom” programmirovanii”, Dokl. AN SSSR, 173:4 (1967), 748–751 | MR | Zbl

[5] Zangwill W. L., “Nonlinear programming via penalty functions”, Management Sci., 13 (1967), 344–358 | DOI | MR | Zbl

[6] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976

[7] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988

[8] Di Pillo G., Grippo L., “Exact penalty functions in constrained optimization”, SIAM J. Control and Optimizat., 27:6 (1989), 1333–1360 | DOI | Zbl

[9] Evtushenko Yu. G., Zhadan V. G., “Tochnye vspomogatelnye funktsii v zadachakh optimizatsii”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 43–57 | MR

[10] Demyanov V. F., “Tochnye shtrafnye funktsii v zadachakh negladkoi optimizatsii”, Vestn. SPbGU Ser. 1, 1994, no. 4(22), 21–27 | MR | Zbl

[11] Belousov E. G., Andropov V. G., “O nepreryvnosti funktsii vozmuscheniya zadachi vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1994, no. 12, 20–24 | MR | Zbl

[12] Belousov E. G., Andronov V. G., “O svodimosti obschei zadachi vypuklogo programmirovaniya k zadache na bezuslovnyi ekstremum”, Izv. vuzov. Matematika, 1995, no. 12, 21–29 | MR

[13] Andronov V. G., Belousov E. G., “O slaboi skhodimosti po argumentu metoda shtrafnykh funktsii”, Zh. vychisl. matem. i matem. fiz., 37:4 (1997), 404–414 | MR | Zbl