@article{ZVMMF_1998_38_4_a4,
author = {V. G. Andronov and E. G. Belousov},
title = {Berge convergence of the penalty function method with respect to the argument},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {573--589},
year = {1998},
volume = {38},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a4/}
}
TY - JOUR AU - V. G. Andronov AU - E. G. Belousov TI - Berge convergence of the penalty function method with respect to the argument JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 573 EP - 589 VL - 38 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a4/ LA - ru ID - ZVMMF_1998_38_4_a4 ER -
%0 Journal Article %A V. G. Andronov %A E. G. Belousov %T Berge convergence of the penalty function method with respect to the argument %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1998 %P 573-589 %V 38 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a4/ %G ru %F ZVMMF_1998_38_4_a4
V. G. Andronov; E. G. Belousov. Berge convergence of the penalty function method with respect to the argument. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 4, pp. 573-589. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a4/
[1] Kummer B., Stability and weak duality in convex programming without regularity, Preprint, Humboldt-Univ, Berlin, 1978, 15 pp.
[2] Bank B., Guddat J., Klatte D., et al., Non-linear parametric optimization, Akad.-Verl., Berlin, 1982
[3] Belousov E. G., Andronov V. G., Razreshimost i ustoichivost zadach polinomialnogo programmirovaniya, Izd-vo MGU, M., 1993 | Zbl
[4] Eremin I. I., “Metod shtrafov v “vypuklom” programmirovanii”, Dokl. AN SSSR, 173:4 (1967), 748–751 | MR | Zbl
[5] Zangwill W. L., “Nonlinear programming via penalty functions”, Management Sci., 13 (1967), 344–358 | DOI | MR | Zbl
[6] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976
[7] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988
[8] Di Pillo G., Grippo L., “Exact penalty functions in constrained optimization”, SIAM J. Control and Optimizat., 27:6 (1989), 1333–1360 | DOI | Zbl
[9] Evtushenko Yu. G., Zhadan V. G., “Tochnye vspomogatelnye funktsii v zadachakh optimizatsii”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 43–57 | MR
[10] Demyanov V. F., “Tochnye shtrafnye funktsii v zadachakh negladkoi optimizatsii”, Vestn. SPbGU Ser. 1, 1994, no. 4(22), 21–27 | MR | Zbl
[11] Belousov E. G., Andropov V. G., “O nepreryvnosti funktsii vozmuscheniya zadachi vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1994, no. 12, 20–24 | MR | Zbl
[12] Belousov E. G., Andronov V. G., “O svodimosti obschei zadachi vypuklogo programmirovaniya k zadache na bezuslovnyi ekstremum”, Izv. vuzov. Matematika, 1995, no. 12, 21–29 | MR
[13] Andronov V. G., Belousov E. G., “O slaboi skhodimosti po argumentu metoda shtrafnykh funktsii”, Zh. vychisl. matem. i matem. fiz., 37:4 (1997), 404–414 | MR | Zbl