A hysteresis model for the capillary contact angle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 4, pp. 674-681 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_4_a16,
     author = {S. D. Iliev},
     title = {A hysteresis model for the capillary contact angle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {674--681},
     year = {1998},
     volume = {38},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a16/}
}
TY  - JOUR
AU  - S. D. Iliev
TI  - A hysteresis model for the capillary contact angle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 674
EP  - 681
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a16/
LA  - ru
ID  - ZVMMF_1998_38_4_a16
ER  - 
%0 Journal Article
%A S. D. Iliev
%T A hysteresis model for the capillary contact angle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 674-681
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a16/
%G ru
%F ZVMMF_1998_38_4_a16
S. D. Iliev. A hysteresis model for the capillary contact angle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 4, pp. 674-681. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_4_a16/

[1] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986

[2] Ahlett R., “An investigation of the angle of contact between paraffin wax and water”, Philos. Mag., 46 (1923), 244–256

[3] Aron Ya. B., Frenkel Ya. I., “Ob ogranichennoi primenimosti pravila Neimana k kraevym uglam smachivaniya”, Zh. eksperim. i teor. fiz., 20:5 (1950), 453

[4] Bikrman J. J., Surface chemistry, Acad. Press, New York, 1958

[5] Elliot G. E. P., Riddiford A. C., “Dynamic contact angles. I. The effect of impressed motion”, J. Colloid Interface Sci., 23 (1967), 389–398 | DOI

[6] Johnson R. E. Jr., Dettre R. H., Brandreth D. A., “Dynamic contact angles and contact angle hysteresis”, J. Collois Interface Sci., 62 (1977), 205–212 | DOI

[7] Dussan V. E. B., “On the spreading of liquids on solid surfaces: Static and dynamic contact lines”, Ann. Rev. Fluid Mec., 11 (1979), 371–400 | DOI

[8] Good R. J., “A thermodynamic derivation of Wenzel's modification of Young's equation for contact angles; Together with a theory of hysteresis”, J. Amer. Chem. Soc., 74 (1952), 5041 | DOI

[9] Finn R., Shinbrot M., “The capilary contact angle. I. The horizontal plane and stick-slip motion”, J. Math. Analyt. and Appl., 123 (1987), 1–17 | DOI | MR | Zbl

[10] Blyashke V., Differentsialnaya geometriya i geometricheskie osnovy teorii otnositelnosti, ONTI, M., 1935

[11] Dussan V., E. B., Davis S. H., “On the motion of a fluid-fluid interface along solid surface”, J. Fluid Mech., 65 (1974), 71–95 | DOI | Zbl

[12] Lantsosh K., Variatsionnye printsipy mekhaniki, Mir, M., 1965

[13] Belyaeva M. A., Slobozhanin L. A., Tyuptsov A. D., “Gidrostatika v slabykh silovykh polyakh”, Vvedenie v dinamiku tela s zhidkostyu v usloviyakh nevesomosti, VTs AN SSSR, M., 1968, 5–68

[14] Finn R., Equilibrium capillary surfaces, Springer, Berlin, 1986

[15] Iliev S. D., “Iterative method for the shape of static drops”, Comput. Mech. Appl. Mech. Engrs., 126 (1995), 251–265 | DOI | MR | Zbl