High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 239-246
Voir la notice de l'article provenant de la source Math-Net.Ru
A suitable post-processing technique in combined with a finite element approximations to the obstacle problems. If the coincidence set is an interior star-like domain with analytical boundary $F$, we define discrete free boundary thus that it is easily computable and converges in distance to $F$ with a rate $\varepsilon(h)\ln^3(1/h)$, $\varepsilon(h)=h|u-u_k|_{H^1}+\|u-u_h\|_{L_2}$. Our present analysis does not rest on the discrete maximum principle.
@article{ZVMMF_1998_38_2_a6,
author = {R. Z. Dautov},
title = {High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {239--246},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/}
}
TY - JOUR AU - R. Z. Dautov TI - High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 239 EP - 246 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/ LA - en ID - ZVMMF_1998_38_2_a6 ER -
%0 Journal Article %A R. Z. Dautov %T High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1998 %P 239-246 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/ %G en %F ZVMMF_1998_38_2_a6
R. Z. Dautov. High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 239-246. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/