High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 239-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A suitable post-processing technique in combined with a finite element approximations to the obstacle problems. If the coincidence set is an interior star-like domain with analytical boundary $F$, we define discrete free boundary thus that it is easily computable and converges in distance to $F$ with a rate $\varepsilon(h)\ln^3(1/h)$, $\varepsilon(h)=h|u-u_k|_{H^1}+\|u-u_h\|_{L_2}$. Our present analysis does not rest on the discrete maximum principle.
@article{ZVMMF_1998_38_2_a6,
     author = {R. Z. Dautov},
     title = {High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {239--246},
     year = {1998},
     volume = {38},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/}
}
TY  - JOUR
AU  - R. Z. Dautov
TI  - High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 239
EP  - 246
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/
LA  - en
ID  - ZVMMF_1998_38_2_a6
ER  - 
%0 Journal Article
%A R. Z. Dautov
%T High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 239-246
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/
%G en
%F ZVMMF_1998_38_2_a6
R. Z. Dautov. High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 239-246. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/

[1] Friedman A., Variational principles and free-boundary problems, Nauka, Moscow, 1990 (Rus. transl.) | Zbl

[2] Kinderlehrer D., Stampacchia G., An introduction to variational inequalities and their applications, Mir, Moscow, 1983 (Russ. transl.) | Zbl

[3] Duvaut G., Lions J.-L., Les inéquations en mécanique et en physique, Mir, Moscow, 1980 (Rus. transl.)

[4] Brezzi F., Caffarelly L., “Convergence of the discrete free bouncaries for finite element approximations”, RAIRO Numer. Analys., 17 (1983), 385–395 | MR

[5] Nitsche J., “$L_\infty$-convergence of finite element approximations”, Lect. Notes in Math., 606, 1977, 261–274 | MR | Zbl

[6] Nochetto R., “A note on the approximation of free boundaries by finite element methods”, Math. Mod. and Numer. Analys., 20:2 (1986), 355–368 | MR | Zbl

[7] Nochetto R., “Sharp $L_\infty$ error estimates for semilinear elliptic problems with free boundaries”, Numer. Math., 54 (1988), 243–255 | DOI | MR | Zbl

[8] Nochetto R., “Pointwise accuracy of a finite element method for nonlinear variational inequalities”, Numer. Math., 54 (1989), 601–618 | DOI | MR | Zbl

[9] Caffarelly L., “The regularity of free boundaries in higher dimensions”, Acta Math., 139 (1977), 155–184 | DOI | MR

[10] Caffarelly L., “Compactness methods in free boundary problems”, Communs Partial Different. Equations, 5 (1980), 427–448 | DOI

[11] Caffarelly L., “A remark on the Housdorf measure of a free boundary and the convergence of coincidence sets”, Boll. Unione Mat. Ital. Ser. A, 18:5 (1981), 109–113

[12] Dautov R. Z., “The operators of exact penalty method for variational inequalities of first kind”, Differential Equations, 31:6 (1995), 1008–1017 (in Russian) | MR | Zbl

[13] Babenko K. I., Foundations of numerical analysis, Nauka, Moscow, 1986 (in Russian)

[14] Dautov R. Z., “$O(h^2)$ accuracy for free boundary in finite element approximations to the 1-D obstacle problem”, Kazan, Izv, Vuzov. Matematika, 1994, no. 9, 39–48 (in Russian) | MR | Zbl

[15] Ladyzenskaja O. A., Uralceva N. N., Linear and quasi-linear elliptic equations, Nauka, Moscow, 1964 (in Russian)

[16] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Mir, Moscow, 1972 (Rus. transl.)

[17] Ciarlet P. G., The finite element method for elliptic problems, Mir, Moscow, 1980 (Rus. transl.) | Zbl

[18] Freshe J., Rannacher R., “Asymptotic $L^\infty$-error estimates for linear finite element approximations of quasilinear boundary value problems”, SIAM J. Numer. Analys., 15 (1978), 418–431 | DOI

[19] Rannacher R., “Zur $L^\infty$-konvergenz linearer finiter Elemente beim Dirichlet-Problem”, Math. Z., 149 (1976), 69–77 | DOI | MR | Zbl

[20] Schatz A., Wahlbin L., “On the quasi-optimality in $L^\infty$ of the $H^1_0$ projection into finite element spases”, Math. Comput., 38 (1982), 1–22 | MR | Zbl