High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 239-246

Voir la notice de l'article provenant de la source Math-Net.Ru

A suitable post-processing technique in combined with a finite element approximations to the obstacle problems. If the coincidence set is an interior star-like domain with analytical boundary $F$, we define discrete free boundary thus that it is easily computable and converges in distance to $F$ with a rate $\varepsilon(h)\ln^3(1/h)$, $\varepsilon(h)=h|u-u_k|_{H^1}+\|u-u_h\|_{L_2}$. Our present analysis does not rest on the discrete maximum principle.
@article{ZVMMF_1998_38_2_a6,
     author = {R. Z. Dautov},
     title = {High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {239--246},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/}
}
TY  - JOUR
AU  - R. Z. Dautov
TI  - High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 239
EP  - 246
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/
LA  - en
ID  - ZVMMF_1998_38_2_a6
ER  - 
%0 Journal Article
%A R. Z. Dautov
%T High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 239-246
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/
%G en
%F ZVMMF_1998_38_2_a6
R. Z. Dautov. High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 239-246. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a6/