Economical scheme for a parabolic equation in cylindrical coordinates in a domain with a small hole
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 220-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_2_a4,
     author = {E. I. Aksenova},
     title = {Economical scheme for a parabolic equation in cylindrical coordinates in a domain with a small hole},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {220--227},
     year = {1998},
     volume = {38},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a4/}
}
TY  - JOUR
AU  - E. I. Aksenova
TI  - Economical scheme for a parabolic equation in cylindrical coordinates in a domain with a small hole
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 220
EP  - 227
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a4/
LA  - ru
ID  - ZVMMF_1998_38_2_a4
ER  - 
%0 Journal Article
%A E. I. Aksenova
%T Economical scheme for a parabolic equation in cylindrical coordinates in a domain with a small hole
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 220-227
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a4/
%G ru
%F ZVMMF_1998_38_2_a4
E. I. Aksenova. Economical scheme for a parabolic equation in cylindrical coordinates in a domain with a small hole. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 220-227. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a4/

[1] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | Zbl

[2] Dyakonov E. G., Raznostnye metody resheniya kraevykh zadach, Vyp. 2, Izd-vo MGU, M., 1972

[3] Donglas J., Dupont T., “Alternating-direction Galerkin methods on rectangles”, II Proc. “SYNSPADE-1970”, Acad. Press, New York–London, 1971, 133–214

[4] Bakhvalov H. C., “O svoistvakh optimalnykh metodov resheniya zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 10:3 (1970), 555–568 | MR | Zbl

[5] Fryazinov I. V., “Ob odnom klasse skhem dlya uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 113–125 | Zbl

[6] Zlotnik A. A., Proektsionno-raznostnye skhemy dlya nestatsionarnykh zadach s negladkimi dannymi, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1979

[7] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnykh skhem s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 20:2 (1980), 422–432 | MR | Zbl

[8] Hayes L. J., “Galerkin alternating-direction methods for nonrectangular regions using path approximations”, SIAM J. Numer. Analys., 18:4 (1981), 627–643 | DOI | MR | Zbl

[9] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978

[10] Bykova E. I., “Proektsionno-raznostnye skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii s osobennostyami v koeffitsientakh”, Zh. vychisl. matem. i matem. fiz., 24:1 (1984), 47–52 | MR | Zbl

[11] Bykova E. I., “Otsenki skorosti skhodimosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v oblasti s malym otverstiem”, Zh. vychisl. matem. i matem. fiz., 24:11 (1984), 1694–1703 | MR | Zbl

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1974

[13] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | Zbl

[14] Ladyzhenskaya O. A., “Ob odnoznachnoi razreshimosti v tselom trekhmernoi zadachi Koshi dlya uravnenii Nave–Stoksa pri nalichii osevoi simmetrii”, Zap. nauchn. sem. LOMI, 7, 1968, 155–177 | Zbl