Finite-difference schemes for time-dependent diffusion-convection problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 207-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_2_a3,
     author = {P. N. Vabishchevich and A. A. Samarskii},
     title = {Finite-difference schemes for time-dependent diffusion-convection problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {207--219},
     year = {1998},
     volume = {38},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a3/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - A. A. Samarskii
TI  - Finite-difference schemes for time-dependent diffusion-convection problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 207
EP  - 219
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a3/
LA  - ru
ID  - ZVMMF_1998_38_2_a3
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A A. A. Samarskii
%T Finite-difference schemes for time-dependent diffusion-convection problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 207-219
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a3/
%G ru
%F ZVMMF_1998_38_2_a3
P. N. Vabishchevich; A. A. Samarskii. Finite-difference schemes for time-dependent diffusion-convection problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 207-219. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a3/

[1] Roache P. J., Computational fluid dynamics, Hermosa, Albuquerque, N. M., 1982

[2] Patankar S. V., Numerical heat transfer and fluid floW, Hemisphere, Washington, DC, 1980 | Zbl

[3] Patel M. K., Marcatos N. C., “An evaluation of eight discretization schemes for two-dimensional convection-diffusion equations”, Int. J. Numer. Methods Fluids, 6 (1986), 129–154 | DOI | Zbl

[4] Shyy W., “A study of finite difference approximations to steady-state, convection-dominated flow problems”, J. Comput. Phys., 57 (19), 415–438 | DOI | MR | Zbl

[5] Siemieniuch J. E., Gladwell I., “Analysis of explicit difference methods for a diffusion-convection equation”, Int. J. Numer. Meths. Eugng., 12 (1978), 899–916 | DOI | MR | Zbl

[6] Morton K. W., “Stability of finite difference aproximations to a diffusion-convection equation”, Int. J. Numer. Meths. Engng., 15 (1980), 677–683 | DOI | MR | Zbl

[7] Richtmyer R. D., Morton K. W., Difference methods for initial-value problems, Wiley, New York, 1967 | Zbl

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[9] Samarskii A. A., Gulin A. V., Ustoichivost raznoctnykh skhem, Nauka, M., 1973 | Zbl

[10] Samarskii A. A., Vabishchevich P. N., Computational heat transfer, Wiley, Chichester, 1995

[11] Vabischevich P. N., Raznostnye skhemy s tsentralnymi raznostyami dlya zadach konvektsii-diffuzii, Preprint No 17, IMM RAN, M., 1993

[12] Vabischevich P. N., Samarskii A. A., “Ob ustoichivosti raznostnykh skhem dlya zadach konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 37:2 (1997), 188–192 | MR

[13] Friedman A., Partial differential equations of parabolic type, New Jersey: Englewood-Cliffs, 1964

[14] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | Zbl

[15] Temam R., Navier–Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1979 | Zbl

[16] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978

[17] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989

[18] Vabischevich P. N., “Monotonnye raznostnye skhemy dlya zadach konvektsii-diffuzii”, Differents. ur-niya, 30 (1994), 503–513