@article{ZVMMF_1998_38_2_a3,
author = {P. N. Vabishchevich and A. A. Samarskii},
title = {Finite-difference schemes for time-dependent diffusion-convection problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {207--219},
year = {1998},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a3/}
}
TY - JOUR AU - P. N. Vabishchevich AU - A. A. Samarskii TI - Finite-difference schemes for time-dependent diffusion-convection problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 207 EP - 219 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a3/ LA - ru ID - ZVMMF_1998_38_2_a3 ER -
%0 Journal Article %A P. N. Vabishchevich %A A. A. Samarskii %T Finite-difference schemes for time-dependent diffusion-convection problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1998 %P 207-219 %V 38 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a3/ %G ru %F ZVMMF_1998_38_2_a3
P. N. Vabishchevich; A. A. Samarskii. Finite-difference schemes for time-dependent diffusion-convection problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 207-219. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a3/
[1] Roache P. J., Computational fluid dynamics, Hermosa, Albuquerque, N. M., 1982
[2] Patankar S. V., Numerical heat transfer and fluid floW, Hemisphere, Washington, DC, 1980 | Zbl
[3] Patel M. K., Marcatos N. C., “An evaluation of eight discretization schemes for two-dimensional convection-diffusion equations”, Int. J. Numer. Methods Fluids, 6 (1986), 129–154 | DOI | Zbl
[4] Shyy W., “A study of finite difference approximations to steady-state, convection-dominated flow problems”, J. Comput. Phys., 57 (19), 415–438 | DOI | MR | Zbl
[5] Siemieniuch J. E., Gladwell I., “Analysis of explicit difference methods for a diffusion-convection equation”, Int. J. Numer. Meths. Eugng., 12 (1978), 899–916 | DOI | MR | Zbl
[6] Morton K. W., “Stability of finite difference aproximations to a diffusion-convection equation”, Int. J. Numer. Meths. Engng., 15 (1980), 677–683 | DOI | MR | Zbl
[7] Richtmyer R. D., Morton K. W., Difference methods for initial-value problems, Wiley, New York, 1967 | Zbl
[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989
[9] Samarskii A. A., Gulin A. V., Ustoichivost raznoctnykh skhem, Nauka, M., 1973 | Zbl
[10] Samarskii A. A., Vabishchevich P. N., Computational heat transfer, Wiley, Chichester, 1995
[11] Vabischevich P. N., Raznostnye skhemy s tsentralnymi raznostyami dlya zadach konvektsii-diffuzii, Preprint No 17, IMM RAN, M., 1993
[12] Vabischevich P. N., Samarskii A. A., “Ob ustoichivosti raznostnykh skhem dlya zadach konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 37:2 (1997), 188–192 | MR
[13] Friedman A., Partial differential equations of parabolic type, New Jersey: Englewood-Cliffs, 1964
[14] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | Zbl
[15] Temam R., Navier–Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1979 | Zbl
[16] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978
[17] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989
[18] Vabischevich P. N., “Monotonnye raznostnye skhemy dlya zadach konvektsii-diffuzii”, Differents. ur-niya, 30 (1994), 503–513