@article{ZVMMF_1998_38_2_a14,
author = {M. M. Karchevskii},
title = {On the mixed finite element method in the nonlinear theory of thin shells},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {324--329},
year = {1998},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a14/}
}
TY - JOUR AU - M. M. Karchevskii TI - On the mixed finite element method in the nonlinear theory of thin shells JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 324 EP - 329 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a14/ LA - ru ID - ZVMMF_1998_38_2_a14 ER -
M. M. Karchevskii. On the mixed finite element method in the nonlinear theory of thin shells. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 324-329. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a14/
[1] Astrakhantsev G. P., “O smeshannom metode konechnykh elementov v zadachakh teorii obolochek”, Zh. vychisl. matem. i matem. fiz., 29:10 (1989), 1492–1504 | MR | Zbl
[2] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980
[3] Karchevskii M. M., “Smeshannyi metod konechnykh elementov dlya nelineinykh zadach teorii plastin”, Izv. vuzov. Matematika, 1992, no. 7, 18–23
[4] Karchevskii M. M., Zabotina L. Sh., Smeshannye skhemy konechnykh elementov dlya nelineinykh zadach teorii obolochek, Dep. v VINITI 07.04.93, No 877-V93, Kazanskii un-t, Kazan, 1993, 22 pp.
[5] Mushtari Kh. M., Galimov K. Z., Nelineinaya teoriya uprugikh obolochek, Tatknigoizdat, Kazan, 1957
[6] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989
[7] Karchevskii M. M., “O razreshimosti geometricheski nelineinykh zadach teorii tonkikh obolochek”, Izv. vuzov. Matematika, 1995, no. 6, 18–23
[8] Shoikhet B. A., “O teoremakh suschestvovaniya v lineinoi teorii obolochek”, Prikl. matem. i mekhan., 1974, no. 3, 567–571 | MR
[9] Korneev V. G., “O differentsialnom operatore sistemy uravnenii ravnovesiya teorii tonkikh obolochek”, Izv. AN SSSR. Mekhan. tverdogo tela, 1975, no. 2, 89–97 | MR
[10] Bernadou M., Ciarlet P. G., “Sur l'ellipticite du modele lineare de coques de W. T. Koiter”, Lect. Notes. Econom. and Math. Systems, 134, 1976, 89–136 | MR | Zbl
[11] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. ur-niya, 27:7 (1991), 1196–1203 | MR
[12] Voloshanovskaya S. N., Karchevskii M. M., “Issledovanie razreshimosti zadachi o silnom izgibe tsilindricheskoi obolochki”, Issledov. po prikl. matematike, 13, Izd-vo KRU, Kazan, 1985, 75–85 | MR
[13] Voloshanovskaya S. N., Karchevskii M. M., “O razreshimosti zadachi o geometricheski nelineinom izgibe nezamknutoi sfericheskoi obolochki”, Issl. po prikl. matem., 15, Izd-vo KGU, Kazan, 1988, 37–48
[14] Krasnoselskii M. A., Vainikko G. M. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1968
[15] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978
[16] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh zadach matematicheskoi fiziki, Izd-vo KGU, Kazan, 1976
[17] Korneev V. G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo LGU, L., 1977