The convergence of the difference solution to the third boundary value problem of elasticity theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 310-314 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_2_a12,
     author = {G. K. Berikelashvili},
     title = {The convergence of the difference solution to the third boundary value problem of elasticity theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {310--314},
     year = {1998},
     volume = {38},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a12/}
}
TY  - JOUR
AU  - G. K. Berikelashvili
TI  - The convergence of the difference solution to the third boundary value problem of elasticity theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 310
EP  - 314
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a12/
LA  - ru
ID  - ZVMMF_1998_38_2_a12
ER  - 
%0 Journal Article
%A G. K. Berikelashvili
%T The convergence of the difference solution to the third boundary value problem of elasticity theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 310-314
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a12/
%G ru
%F ZVMMF_1998_38_2_a12
G. K. Berikelashvili. The convergence of the difference solution to the third boundary value problem of elasticity theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 2, pp. 310-314. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_2_a12/

[1] Samarskii A. A., Nazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987

[2] Belukhina I. G., “Raznostnye skhemy dlya resheniya nekotorykh staticheskikh zadach teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 8:4 (1968), 808–823

[3] Makarov V. L., Kalinin V. M., “Soglasovannye otsenki skorosti skhodimosti raznostnykh skhem v $W_2$-nopme dlya tretei kraevoi zadachi teorii uprugosti”, Differents. ur-niya, 22:7 (1986), 1265–1268 | MR | Zbl

[4] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | Zbl

[5] Dupont T., Scott R., “Polynomial approximation of functions in Sobolev spaces”, Math. Comput., 34 (1980), 441–463 | DOI | MR | Zbl

[6] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979