@article{ZVMMF_1998_38_1_a9,
author = {V. G. Krupa},
title = {Construction of high-order accurate difference schemes for hyperbolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {85--98},
year = {1998},
volume = {38},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a9/}
}
TY - JOUR AU - V. G. Krupa TI - Construction of high-order accurate difference schemes for hyperbolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 85 EP - 98 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a9/ LA - ru ID - ZVMMF_1998_38_1_a9 ER -
V. G. Krupa. Construction of high-order accurate difference schemes for hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 85-98. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a9/
[1] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77
[2] Van Leer B., “Towards the ultimate conservative difference scheme II”, J. Comput. Phys., 14 (1974), 361–370 | DOI | Zbl
[3] Van Leer B., “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI
[4] Van Albada G. D., Van Leer B., Roberts W. W., “A comparative study of computatioiral methods in cosmis gas dynamics”, Astron. Astrophys., 108 (1982), 76–84 | Zbl
[5] Kopchenov V. I., Kraiko A. N., “Monotonnaya raznostnaya skhema vtorogo poryadka dlya giperbolicheskikh sistem s dvumya nezavisimymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 848–859 | MR | Zbl
[6] Ivanov M. Ya., Krupa V. G., Nigmatullin R. Z., “Neyavnaya skhema SK. Godunova povyshennoi tochnosti dlya integrirovaniya uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 888–901 | Zbl
[7] Ivanov M. Ya., Krupa B. G., Nigmatullin R. Z., “On the CFD monotone high accuracy methods”, AGARD Lecture Series, TCP 02/LS198, 1994, 2
[8] Harten A., “High resolutions schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[9] Sweby P. K., “High resolutions schemes using flux limiters for hyperbolic conservation laws”, SIAM J. Numer. Analys., 21:5 (1984), 995–1011 | DOI | MR | Zbl
[10] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper No 85-0363, 1985, 11 pp.
[11] Ii G. S., Kharten A., “Neyavnye TVD skhemy dlya giperbolicheskikh sistem uravnenii, zapisannye v konservativnoi forme otnositelno sistemy krivolineinykh koordinat”, Aerokosmich. tekhn., 1987, no. 11, 11–21
[12] Chakravarthy S. R., Osher S., “Very high order accurate TVD schemes”, IMA Vol. Math. Appl., 2 (1986), 229–274 | MR | Zbl
[13] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[14] Chakravarthy S. R., Harten A., Osher S., Essentially non-oscillatory shock-capturing schemes of arbitrarily-high accuracy, AIAA Paper No 86-0339, 14 pp.
[15] Chakravarthy S. R., Engquist B., Harten A., Osher S., “Uniformly high order accurate schemes, III”, J. Comput. Phys., 71 (1987), 231–303 | DOI | MR | Zbl
[16] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, J. Comput. Phys., 77 (1989), 439–471 | DOI
[17] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, J. Comput. Phys., 83 (1989), 32–78 | DOI | MR | Zbl
[18] Godunov C. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | Zbl
[19] Lax P., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communs Pure and Appl. Math., 7 (1954), 159–201 | DOI | MR
[20] Collela P., Woodward P. R., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR
[21] Hakkinen R. J., Greber I., Trilling L., Arbarbanel S. S., The interaction of an oblique shock wave with a laminar boundary layer, NASA Memo-2-18-59W, 1959