Construction of high-order accurate difference schemes for hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 85-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_1_a9,
     author = {V. G. Krupa},
     title = {Construction of high-order accurate difference schemes for hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {85--98},
     year = {1998},
     volume = {38},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a9/}
}
TY  - JOUR
AU  - V. G. Krupa
TI  - Construction of high-order accurate difference schemes for hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 85
EP  - 98
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a9/
LA  - ru
ID  - ZVMMF_1998_38_1_a9
ER  - 
%0 Journal Article
%A V. G. Krupa
%T Construction of high-order accurate difference schemes for hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 85-98
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a9/
%G ru
%F ZVMMF_1998_38_1_a9
V. G. Krupa. Construction of high-order accurate difference schemes for hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 85-98. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a9/

[1] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[2] Van Leer B., “Towards the ultimate conservative difference scheme II”, J. Comput. Phys., 14 (1974), 361–370 | DOI | Zbl

[3] Van Leer B., “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI

[4] Van Albada G. D., Van Leer B., Roberts W. W., “A comparative study of computatioiral methods in cosmis gas dynamics”, Astron. Astrophys., 108 (1982), 76–84 | Zbl

[5] Kopchenov V. I., Kraiko A. N., “Monotonnaya raznostnaya skhema vtorogo poryadka dlya giperbolicheskikh sistem s dvumya nezavisimymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 848–859 | MR | Zbl

[6] Ivanov M. Ya., Krupa V. G., Nigmatullin R. Z., “Neyavnaya skhema SK. Godunova povyshennoi tochnosti dlya integrirovaniya uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 888–901 | Zbl

[7] Ivanov M. Ya., Krupa B. G., Nigmatullin R. Z., “On the CFD monotone high accuracy methods”, AGARD Lecture Series, TCP 02/LS198, 1994, 2

[8] Harten A., “High resolutions schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[9] Sweby P. K., “High resolutions schemes using flux limiters for hyperbolic conservation laws”, SIAM J. Numer. Analys., 21:5 (1984), 995–1011 | DOI | MR | Zbl

[10] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper No 85-0363, 1985, 11 pp.

[11] Ii G. S., Kharten A., “Neyavnye TVD skhemy dlya giperbolicheskikh sistem uravnenii, zapisannye v konservativnoi forme otnositelno sistemy krivolineinykh koordinat”, Aerokosmich. tekhn., 1987, no. 11, 11–21

[12] Chakravarthy S. R., Osher S., “Very high order accurate TVD schemes”, IMA Vol. Math. Appl., 2 (1986), 229–274 | MR | Zbl

[13] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[14] Chakravarthy S. R., Harten A., Osher S., Essentially non-oscillatory shock-capturing schemes of arbitrarily-high accuracy, AIAA Paper No 86-0339, 14 pp.

[15] Chakravarthy S. R., Engquist B., Harten A., Osher S., “Uniformly high order accurate schemes, III”, J. Comput. Phys., 71 (1987), 231–303 | DOI | MR | Zbl

[16] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, J. Comput. Phys., 77 (1989), 439–471 | DOI

[17] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, J. Comput. Phys., 83 (1989), 32–78 | DOI | MR | Zbl

[18] Godunov C. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | Zbl

[19] Lax P., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communs Pure and Appl. Math., 7 (1954), 159–201 | DOI | MR

[20] Collela P., Woodward P. R., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR

[21] Hakkinen R. J., Greber I., Trilling L., Arbarbanel S. S., The interaction of an oblique shock wave with a laminar boundary layer, NASA Memo-2-18-59W, 1959