Accelerating the convergence rate of a combined relaxational method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 53-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_1_a6,
     author = {I. V. Konnov},
     title = {Accelerating the convergence rate of a combined relaxational method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {53--60},
     year = {1998},
     volume = {38},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a6/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Accelerating the convergence rate of a combined relaxational method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 53
EP  - 60
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a6/
LA  - ru
ID  - ZVMMF_1998_38_1_a6
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Accelerating the convergence rate of a combined relaxational method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 53-60
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a6/
%G ru
%F ZVMMF_1998_38_1_a6
I. V. Konnov. Accelerating the convergence rate of a combined relaxational method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 53-60. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a6/

[1] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989

[2] Uryasev S. P., Adaptivnye algoritmy stokhasticheskoi optimizatsii i teorii igr, Nauka, M., 1990

[3] Harker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Program., 48:2 (1990), 161–220 | DOI | MR | Zbl

[4] Marcotte P., Zhu D. L., “Global convergence of descent processes for solving non strictly monotone variational inequalities”, Comput. Optimizat. and Appl., 4:2 (1995), 127–138 | DOI | MR | Zbl

[5] Patriksson M., “On the convergence of descent methods for monotone variational inequalities”, Operat. Res. Letts, 16:5 (1994), 265–269 | DOI | MR | Zbl

[6] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i matem. metody, 12:4 (1976), 747–756 | MR | Zbl

[7] Khobotov E. N., “O modifikatsii ekstragradientnogo metoda dlya resheniya variatsionnykh neravenstv i nekotorykh zadach optimizatsii”, Zh. vychisl. matem. i matem. fiz., 27:10 (1987), 1462–1473 | MR | Zbl

[8] Antipin A. S., “O skhodimosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704 | MR | Zbl

[9] Konnov I. V., “Kombinirovannye relaksatsionnye metody dlya poiska tochek ravnovesiya i resheniya smezhnykh zadach”, Izv. vuzov. Matematika, 1993, no. 2, 46–53 | MR | Zbl

[10] Konnov I. V., “O skorosti skhodimosti kombinirovannykh relaksatsionnykh metodov”, Izv. vuzov. Matematika, 1993, no. 12, 89–92 | MR | Zbl

[11] Solodov M. V., Tseng P., Modified projection-type methods for monotone variational inequalities, Techn. Rept 94-04, Univ. of Wisconsin, Madison, 1994

[12] Sun D., “A new stepsize skill for solving a class of nonlinear projection equations”, J. Comput. Math., 13:4 (1995), 357–368 | MR | Zbl

[13] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988

[14] Tseng P., On linear convergence of iterative methods for the variational inequality problem, Techn. Rept. Seattle, Univ. of Washington, 1993