@article{ZVMMF_1998_38_1_a4,
author = {A. S. Popov},
title = {Cubature formulas on a sphere that are invariant with respect to octahedron rotation groups},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {34--41},
year = {1998},
volume = {38},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a4/}
}
TY - JOUR AU - A. S. Popov TI - Cubature formulas on a sphere that are invariant with respect to octahedron rotation groups JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 34 EP - 41 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a4/ LA - ru ID - ZVMMF_1998_38_1_a4 ER -
A. S. Popov. Cubature formulas on a sphere that are invariant with respect to octahedron rotation groups. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 34-41. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a4/
[1] McLaren A. D., “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | MR | Zbl
[2] Lebedev V. I., “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa–Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 48–54 | Zbl
[3] Lebedev V. I., “O kvadraturakh na sfere”, Zh. vychisl. matem. i matem. fiz., 16:2 (1976), 293–306 | MR | Zbl
[4] Lebedev V. I., “Kvadraturnye formuly dlya sfery 25–29-go poryadka tochnosti”, Sibirskii matem. zh., 18:1 (1977), 132–142 | MR | Zbl
[5] Lebedev V. I., “Kvadraturnaya formula 35-go poryadka dlya sfery”, Teoriya kubaturnykh formul i vychisl. matem., Novosibirsk, 1980, 110–114 | Zbl
[6] Lebedev V. I., Skorokhodov A. L., “Kvadraturnye formuly dlya sfery 41-, 47- i 53-go poryadkov”, Dokl. RAN, 324:3 (1992), 519–524 | Zbl
[7] Lebedev V. I., “Kvadraturnaya formula dlya sfery 59-go algebraicheskogo poryadka tochnosti”, Dokl. RAN, 338:4 (1994), 454–456 | Zbl
[8] Konyaev S. I., Kvadraturnye formuly na sfere, invariantnye otnositelno gruppy ikosaedra, Preprint IAE-2516, In-t at. energii AN SSSR, M., 1975
[9] Konyaev S. I., Invariantnye formuly integrirovaniya na sfere, Preprint IAE-2553, In-t at. energii AN SSSR, M., 1975
[10] Konyaev S. I., “Kvadratury tipa Gaussa dlya sfery, invariantnye otnositelno gruppy ikosaedra s inversiei”, Matem. zametki, 25:4 (1979), 629–634 | MR | Zbl
[11] Konyaev S. I., Kvadraturnye formuly dlya sfery 23 i 27 poryadkov, invariantnye otnositelno gruppy ikosaedra s inversiei, Preprint IAE-5072/16, In-t at. energii AN SSSR, M., 1990
[12] Konyaev S. I., “On invariant quadrature formulae for a sphere”, Russ. J. Numer. Analys. Math. Modelling, 10:1 (1995), 41–47 | DOI | MR | Zbl
[13] Popov A. S., “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Analys. Math. Modelling, 9:6 (1994), 535–546 | DOI | Zbl
[14] Popov A. C., “Kubaturnye formuly dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zh. vychisl. matem. i matem. fiz., 35:3 (1995), 459–466 | MR | Zbl
[15] Popov A. S., “Kubaturnye formuly vysokikh poryadkov tochnosti dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 5–9 | MR | Zbl
[16] Sobolev S. L., “O formulakh mekhanicheskikh kubatur na poverkhnosti sfery”, Sibirskii matem. zh., 3:5 (1962), 769–796 | MR | Zbl
[17] Coxeter H. S. M., “The product of the generators of a finite group generated by reflections”, Duke Math. J., 18:4 (1951), 765–782 | DOI | MR | Zbl
[18] Boltyanskii V. G., Vilenkin N. Ya., Simmetriya v algebre, Nauka, M., 1967
[19] Ditkin V. A., “O nekotorykh priblizhennykh formulakh dlya vychisleniya trekhkratnykh integralov”, Dokl. AN SSSR, 62:4 (1948), 445–447 | MR | Zbl
[20] Albrecht J., Collatz L., “Zur numerischen Auswertung mehrdimensionaler Integrate”, Z. angew. Math, und Mech., 38:1/2 (1958), 1–15 | DOI | MR | Zbl
[21] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1974
[22] Dennis Dzh. ml., Shnabel R., Chislenye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | Zbl