@article{ZVMMF_1998_38_1_a17,
author = {S. E. Zhelezovsky and G. M. Ivanov and N. P. Krivonogov},
title = {The rate of convergence of {Galerkin} approximations for a nonlinear thermoelasticity problem for thin plates},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {157--168},
year = {1998},
volume = {38},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a17/}
}
TY - JOUR AU - S. E. Zhelezovsky AU - G. M. Ivanov AU - N. P. Krivonogov TI - The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 157 EP - 168 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a17/ LA - ru ID - ZVMMF_1998_38_1_a17 ER -
%0 Journal Article %A S. E. Zhelezovsky %A G. M. Ivanov %A N. P. Krivonogov %T The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1998 %P 157-168 %V 38 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a17/ %G ru %F ZVMMF_1998_38_1_a17
S. E. Zhelezovsky; G. M. Ivanov; N. P. Krivonogov. The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 157-168. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a17/
[1] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972
[2] Novatskii V., Dinamicheskie zadachi termouprugosti, Mir, M., 1970
[3] Podstrigach Ya. M., “Temperaturnoe pole v tonkikh obolochkakh”, Dokl. AN USSR, 1958, no. 5, 505–507 | Zbl
[4] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shkola, M., 1967 | Zbl
[5] Zhelezovskii S. E., “O skorosti skhodimosti metoda Bubnova-Galerkina dlya nelineinoi zadachi teorii uprugikh obolochek”, Differents. ur-niya, 31:5 (1995), 858–869 | MR
[6] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii”, Differents. ur-niya, 23:8 (1987), 1407–1416 | MR
[7] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya lineinykh nestatsionarnykh uravnenii”, Differents. ur-niya, 18:4 (1982), 639–645 | MR | Zbl
[8] Zarubin A. G., “O skorosti skhodimosti metoda Faedo-Galerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. ur-niya, 26:12 (1990), 2051–2059 | MR | Zbl
[9] Zhelezovskaya L. A., Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya giperbolicheskikh uravnenii”, Differents. ur-niya, 26:2 (1990), 323–333 | MR
[10] Zhelezovskii S. E., “Metod Bubnova–Galerkina dlya abstraktnoi kvazilineinoi zadachi o statsionarnom deistvii”, Differents. ur-niya, 31:7 (1995), 1222–1231 | MR
[11] Lyashko A. D., “Raznostnye skhemy dlya zadachi ob izgibe tonkikh plastin”, Chisl. metody mekhan. sploshnoi sredy, 4, no. 1, VTs SO AN SSSR, Novosibirsk, 1973, 71–83
[12] Lyashko A. D., “Raznostnye skhemy dlya zadach o malykh progibakh koltsevidnykh plastin”, Chisl. metody mekhan. sploshnoi sredy, 4, no. 2, VTs SO AN SSSR, Novosibirsk, 1973, 116–131 | MR
[13] Voloshanovskaya S. N., Karchevskii M. M., Lyashko A. D., “Raznostnye skhemy dlya nekotorykh zadach fizicheski i geometricheski nelineinogo izgiba plastin”, Programmirovanie i chisl. metody, Izd-vo Kazansk. un-ta, Kazan, 1978, 6–18 | MR
[14] Lyashko A. D., Karchevskii M. M., “Nelineinye zadachi teorii filtratsii, uprugosti i plastichnosti i ikh setochnye approksimatsii”, Variatsionno-raznostnye metody v matem. fiz., OVM AN SSSR, M., 1984, 160–171
[15] Zabotina L. Sh., Karchevskii M. M., “O smeshannykh skhemakh konechnykh elementov dlya nelineinykh zadach teorii obolochek”, Izv. vuzov. Matematika, 1996, no. 1, 44–50 | MR | Zbl
[16] Duvaut G., Lions J.-L., “Problemes unilateraux dans la theorie de la flexion forte des plaques. II. Le cas d'evolution”, J. Mec., 13:2 (1974), 245–266 | MR | Zbl
[17] Wenk H.-U., “On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface”, Appl. Mat., 27:6 (1982), 393–416 | MR | Zbl
[18] Chrzeszczytk A., “On the regularity, uniqueness and continuous dependence for generalized solutions of some coupled problems in nonlinear theory of thermoelastic shells”, Arch. Mech., 38:1–2 (1986), 97–102
[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972
[20] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966
[21] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 752–757 | MR
[22] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[23] Ladyzhenskaya O. A., Solonchakov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[24] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981
[25] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970
[26] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[27] Tribel Kh., Teoriya interpolyatsii, funktsionalnye Prostranstva, differentsialnye operatory, Mir, M., 1980
[28] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965
[29] Mikhlin S. G., Problema minimuma kvadratichnogo funktsionala, Gostekhteorizdat, M.-L., 1952