The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 157-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_1_a17,
     author = {S. E. Zhelezovsky and G. M. Ivanov and N. P. Krivonogov},
     title = {The rate of convergence of {Galerkin} approximations for a nonlinear thermoelasticity problem for thin plates},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {157--168},
     year = {1998},
     volume = {38},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a17/}
}
TY  - JOUR
AU  - S. E. Zhelezovsky
AU  - G. M. Ivanov
AU  - N. P. Krivonogov
TI  - The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 157
EP  - 168
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a17/
LA  - ru
ID  - ZVMMF_1998_38_1_a17
ER  - 
%0 Journal Article
%A S. E. Zhelezovsky
%A G. M. Ivanov
%A N. P. Krivonogov
%T The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 157-168
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a17/
%G ru
%F ZVMMF_1998_38_1_a17
S. E. Zhelezovsky; G. M. Ivanov; N. P. Krivonogov. The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 157-168. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a17/

[1] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972

[2] Novatskii V., Dinamicheskie zadachi termouprugosti, Mir, M., 1970

[3] Podstrigach Ya. M., “Temperaturnoe pole v tonkikh obolochkakh”, Dokl. AN USSR, 1958, no. 5, 505–507 | Zbl

[4] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shkola, M., 1967 | Zbl

[5] Zhelezovskii S. E., “O skorosti skhodimosti metoda Bubnova-Galerkina dlya nelineinoi zadachi teorii uprugikh obolochek”, Differents. ur-niya, 31:5 (1995), 858–869 | MR

[6] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii”, Differents. ur-niya, 23:8 (1987), 1407–1416 | MR

[7] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya lineinykh nestatsionarnykh uravnenii”, Differents. ur-niya, 18:4 (1982), 639–645 | MR | Zbl

[8] Zarubin A. G., “O skorosti skhodimosti metoda Faedo-Galerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. ur-niya, 26:12 (1990), 2051–2059 | MR | Zbl

[9] Zhelezovskaya L. A., Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya giperbolicheskikh uravnenii”, Differents. ur-niya, 26:2 (1990), 323–333 | MR

[10] Zhelezovskii S. E., “Metod Bubnova–Galerkina dlya abstraktnoi kvazilineinoi zadachi o statsionarnom deistvii”, Differents. ur-niya, 31:7 (1995), 1222–1231 | MR

[11] Lyashko A. D., “Raznostnye skhemy dlya zadachi ob izgibe tonkikh plastin”, Chisl. metody mekhan. sploshnoi sredy, 4, no. 1, VTs SO AN SSSR, Novosibirsk, 1973, 71–83

[12] Lyashko A. D., “Raznostnye skhemy dlya zadach o malykh progibakh koltsevidnykh plastin”, Chisl. metody mekhan. sploshnoi sredy, 4, no. 2, VTs SO AN SSSR, Novosibirsk, 1973, 116–131 | MR

[13] Voloshanovskaya S. N., Karchevskii M. M., Lyashko A. D., “Raznostnye skhemy dlya nekotorykh zadach fizicheski i geometricheski nelineinogo izgiba plastin”, Programmirovanie i chisl. metody, Izd-vo Kazansk. un-ta, Kazan, 1978, 6–18 | MR

[14] Lyashko A. D., Karchevskii M. M., “Nelineinye zadachi teorii filtratsii, uprugosti i plastichnosti i ikh setochnye approksimatsii”, Variatsionno-raznostnye metody v matem. fiz., OVM AN SSSR, M., 1984, 160–171

[15] Zabotina L. Sh., Karchevskii M. M., “O smeshannykh skhemakh konechnykh elementov dlya nelineinykh zadach teorii obolochek”, Izv. vuzov. Matematika, 1996, no. 1, 44–50 | MR | Zbl

[16] Duvaut G., Lions J.-L., “Problemes unilateraux dans la theorie de la flexion forte des plaques. II. Le cas d'evolution”, J. Mec., 13:2 (1974), 245–266 | MR | Zbl

[17] Wenk H.-U., “On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface”, Appl. Mat., 27:6 (1982), 393–416 | MR | Zbl

[18] Chrzeszczytk A., “On the regularity, uniqueness and continuous dependence for generalized solutions of some coupled problems in nonlinear theory of thermoelastic shells”, Arch. Mech., 38:1–2 (1986), 97–102

[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[20] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966

[21] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 752–757 | MR

[22] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[23] Ladyzhenskaya O. A., Solonchakov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[24] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981

[25] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[26] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[27] Tribel Kh., Teoriya interpolyatsii, funktsionalnye Prostranstva, differentsialnye operatory, Mir, M., 1980

[28] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965

[29] Mikhlin S. G., Problema minimuma kvadratichnogo funktsionala, Gostekhteorizdat, M.-L., 1952