An analogue of Schwarz method for solving Zaremba problem and its application in underground fluid mechanics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 150-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_1_a16,
     author = {A. I. Ibragimov and A. A. Nekrasov},
     title = {An analogue of {Schwarz} method for solving {Zaremba} problem and its application in underground fluid mechanics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {150--156},
     year = {1998},
     volume = {38},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a16/}
}
TY  - JOUR
AU  - A. I. Ibragimov
AU  - A. A. Nekrasov
TI  - An analogue of Schwarz method for solving Zaremba problem and its application in underground fluid mechanics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 150
EP  - 156
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a16/
LA  - ru
ID  - ZVMMF_1998_38_1_a16
ER  - 
%0 Journal Article
%A A. I. Ibragimov
%A A. A. Nekrasov
%T An analogue of Schwarz method for solving Zaremba problem and its application in underground fluid mechanics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 150-156
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a16/
%G ru
%F ZVMMF_1998_38_1_a16
A. I. Ibragimov; A. A. Nekrasov. An analogue of Schwarz method for solving Zaremba problem and its application in underground fluid mechanics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 1, pp. 150-156. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_1_a16/

[1] Masket M., Techenie odnofaznykh zhidkostei v poristoi srede, Gostopizdat, M.-L., 1953

[2] Charnyi I. A., Podzemnaya gidromekhanika, Gostopizdat, M., 1963

[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[4] Mateeva E. I., Paltsev B. V., “O razdelenii oblastei pri reshenii smeshannykh kraevykh zadach dlya uravneniya Puassona v oblastyakh slozhnoi formy”, Zh. vychisl. matem. i matem. fiz., 13:6 (1973), 1441–1458 | MR | Zbl

[5] Fourth international symposium on domain decomposition methods for partial differential equations, Moscow, 1990; SIAM, Philadelphia, 1991

[6] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967

[7] Bogachev K. Yu., “Obosnovanie metoda fiktivnykh oblastei reshenii smeshannykh kraevykh zadach dlya kvazilineinykh ellipticheskikh uravnenii”, Vestn. MGU. Ser. 1. Matem., mekhan., 1996, no. 3, 16–28 | MR

[8] Zaremba S., “Ob odnoi smeshannoi zadache, otnosyascheisya k uravneniyu Laplasa”, Uspekhi matem. nauk, 1:3–4(13–14) (1946), 125–146 | MR | Zbl

[9] Mozer J., “On harnack theorem for elliptic differential equations”, Communs Pure and Appl. Math., 17:1 (1964), 571–591

[10] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971

[11] Littman U., Stampakya G., Vainberger G., “Regulyarnye tochki dlya ellipticheskikh uravnenii s razryvnymi koeffitsientami”, Sb. perev. Matematika, 2, 1965, 72–97