Electromagnetostatic operator, its spectral properties, and application to the problem of distribution of eddy currents
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 12, pp. 2043-2054 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_12_a9,
     author = {I. A. Chegis},
     title = {Electromagnetostatic operator, its spectral properties, and application to the problem of distribution of eddy currents},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2043--2054},
     year = {1998},
     volume = {38},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_12_a9/}
}
TY  - JOUR
AU  - I. A. Chegis
TI  - Electromagnetostatic operator, its spectral properties, and application to the problem of distribution of eddy currents
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 2043
EP  - 2054
VL  - 38
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_12_a9/
LA  - ru
ID  - ZVMMF_1998_38_12_a9
ER  - 
%0 Journal Article
%A I. A. Chegis
%T Electromagnetostatic operator, its spectral properties, and application to the problem of distribution of eddy currents
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 2043-2054
%V 38
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_12_a9/
%G ru
%F ZVMMF_1998_38_12_a9
I. A. Chegis. Electromagnetostatic operator, its spectral properties, and application to the problem of distribution of eddy currents. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 12, pp. 2043-2054. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_12_a9/

[1] Khizhnyak N. A., Integralnye uravneniya makroskopicheskoi elektrodinamiki, Nauk. dumka, Kiev, 1986

[2] Friedman M. J., “Mathematical study of the nonlinear singular integral magnetic field equation. I”, SIAM J. Appl. Math., 39:1 (1980), 14–20 | DOI | MR | Zbl

[3] Bykhovskii E. B., Smirnov H. B., “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po dannoi oblasti, i operatorakh vektornogo analiza”, Tr. MIAN SSSR, 59, M., 1960, 5–36

[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[5] Miya K., Hashizume H., “Application of $T$-method to A. C. problem-based on boundary element method”, IEEE Trans. Magnetics, 24:1 (1988), 134–137 | DOI

[6] Chegis I. A., “Reshenie zadachi raspredeleniya vikhrevykh tokov”, Zh. vychisl. matem. i matem. fiz., 32:7 (1992), 1046–1056 | MR | Zbl

[7] Friedman M. J., “Mathematical study of the nonlinear singular integral magnetic field equation. III”, SIAM J. Math. Analys., 12:4 (1981), 536–540 | DOI | Zbl

[8] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983

[9] Veil G., Metod ortogonalnoi proektsii v teorii potentsiala, Izbr. tr. Matem. i teor. fiz., Nauka, M., 1984

[10] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[11] Dyakin V. V., Raevskii V. Ya., “Issledovanie odnogo uravneniya elektrofiziki”, Zh. vychisl. matem. i matem. fiz., 30:2 (1990), 291–297 | MR

[12] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982

[13] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhteorizdat, M., 1953

[14] Chegis I. A., “Zadacha raspredeleniya vikhrevykh tokov. Teoremy suschestvovaniya, edinstvennosti, algoritm resheniya”, Zh. vychisl. matem. i matem. fiz., 34:7 (1994), 1053–1066 | MR | Zbl

[15] Kupradze V. D., Granichnye zadachi teorii kolebanii i integralnye uravneniya, Gostekhteorizdat, M.-L., 1950