A parallel version of the generalized alternating triangular method for elliptic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 12, pp. 2002-2012 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_12_a6,
     author = {O. Yu. Milyukova},
     title = {A parallel version of the generalized alternating triangular method for elliptic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2002--2012},
     year = {1998},
     volume = {38},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_12_a6/}
}
TY  - JOUR
AU  - O. Yu. Milyukova
TI  - A parallel version of the generalized alternating triangular method for elliptic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 2002
EP  - 2012
VL  - 38
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_12_a6/
LA  - ru
ID  - ZVMMF_1998_38_12_a6
ER  - 
%0 Journal Article
%A O. Yu. Milyukova
%T A parallel version of the generalized alternating triangular method for elliptic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 2002-2012
%V 38
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_12_a6/
%G ru
%F ZVMMF_1998_38_12_a6
O. Yu. Milyukova. A parallel version of the generalized alternating triangular method for elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 12, pp. 2002-2012. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_12_a6/

[1] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | Zbl

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[3] Kucherov A. B., Nikolaev E. S., “Poperemenno-treugolnoi iteratsionnyi metod resheniya setochnykh ellipticheskikh uravnenii v pryamougolnike”, Zh. vychisl. matem i matem. fiz., 16:5 (1976), 1164–1174 | MR | Zbl

[4] Kucherov A. B., Nikolaev E. S., “Poperemenno-treugolnyi iteratsionnyi metod resheniya setochnykh ellipticheskikh uravnenii v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 17:3 (1977), 664–675 | MR

[5] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991

[6] Kucherov A. B., Biblioteka programm dlya resheniya kraevykh zadach raznostnymi metodami, Izd-vo MGU, M., 1983, 60–68

[7] Kucherov A. B., Nikolaev E. S., “Parallelnye algoritmy iteratsionnykh metodov s faktorizovannym operatorom dlya resheniya ellipticheskikh kraevykh zadach”, Differents. ur-niya, 20:7 (1984), 1230–1236 | MR

[8] Milyukova O. Yu., Chetverushkin B. N., “Parallelnyi variant poperemenno-treugolnogo metoda”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 228–238 | MR | Zbl

[9] Smith B., Bjorstad P., Grapp W., Domain decomposition. Parallel multilevel method for elliptic partial differential equations, Cambridge Univ. Press, Cambridge, 1996

[10] Biryukova L. Yu., Chetverushkin B. N., “O vozmozhnosti realizatsii kvazigidrodinamicheskoi modeli poluprovodnikovoi plazmy na mnogoprotsessornykh vychislitelnykh sistemakh”, Matem. modelirovanie, 3:6 (1991), 61–71