Approximation of singularly perturbed elliptic equations with convective terms in the case of a flow impinging on an impermeable wall
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 11, pp. 1844-1859 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_11_a6,
     author = {G. I. Shishkin},
     title = {Approximation of singularly perturbed elliptic equations with convective terms in the case of a flow impinging on an impermeable wall},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1844--1859},
     year = {1998},
     volume = {38},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Approximation of singularly perturbed elliptic equations with convective terms in the case of a flow impinging on an impermeable wall
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1844
EP  - 1859
VL  - 38
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a6/
LA  - ru
ID  - ZVMMF_1998_38_11_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Approximation of singularly perturbed elliptic equations with convective terms in the case of a flow impinging on an impermeable wall
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1844-1859
%V 38
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a6/
%G ru
%F ZVMMF_1998_38_11_a6
G. I. Shishkin. Approximation of singularly perturbed elliptic equations with convective terms in the case of a flow impinging on an impermeable wall. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 11, pp. 1844-1859. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a6/

[1] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[3] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[4] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[5] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983

[6] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[7] Liseikin V. D., Petrenko V. E., Adaptivno-invariantnyi metod chislennogo resheniya zadach s pogranichnymi i vnutrennimi sloyami, VTs SO AN SSSR, Novosibirsk, 1989

[8] O'Malley R. E., Singular perturbation methods for ordinary differential equations, Appl. Math. Sciences, 89, Springer, New York, 1991 | MR

[9] Marchuk G. I., Shaidurov B. B., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979

[10] Bagaev B. M., Shaidurov V. V., “Variatsionno-raznostnoe reshenie uravneniya s malym parametrom”, Metody vychisl. i prikladnoi matem., Novosibirsk, 1977, 89–99 | Zbl

[11] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym granichnym usloviem”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1649–1662 | MR

[12] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for quasilinear parabolic equations in the case of complete degeneracy in spatial variables”, Sov. J. Numer. Analys. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl

[13] Shishkin G. I., “Problema approksimatsii diffuzionnogo potoka pri chislennom modelirovanii protsessa perenosa primesei”, Matem. modelirovanie, 7:7 (1995), 61–80 | MR

[14] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi matem. nauk, 17:3 (1962), 3–146 | MR

[15] Hegarty A., Miller J. J. H., O'Riordan E., Shishkin G., “Numerical results for advection-dominated heat transfer in a moving fluid with a non-slip boundary condition”, Int. J. Numer. Meth. Heat and Fluid Flow, 5:2 (1995), 131–140 | DOI | MR | Zbl