@article{ZVMMF_1998_38_11_a2,
author = {E. B. Kuznetsov},
title = {An approach to the integration of the {Euler} kinematic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1806--1813},
year = {1998},
volume = {38},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a2/}
}
TY - JOUR AU - E. B. Kuznetsov TI - An approach to the integration of the Euler kinematic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 1806 EP - 1813 VL - 38 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a2/ LA - ru ID - ZVMMF_1998_38_11_a2 ER -
E. B. Kuznetsov. An approach to the integration of the Euler kinematic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 11, pp. 1806-1813. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a2/
[1] Lure A. I., Analiticheskaya mekhanika, Fizmatgiz, M., 1961
[2] Davidenko D. F., “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii”, Dokl. AN SSSR, 88:4 (1953), 601–602 | MR | Zbl
[3] Grigolyuk E. I., Shalashilin V. I., Problemy nelineinogo deformirovaniya, Nauka, M., 1988 | Zbl
[4] Shalashilin V. I., Kuznetsov E. B., “Nailuchshii parametr prodolzheniya resheniya”, Dokl. RAN, 334:5 (1994), 566–568 | MR
[5] Kuznetsov E. B., Shalashilin V. I., “Zadacha Koshi kak zadacha prodolzheniya po nailuchshemu parametru”, Differents. ur-niya, 30:6 (1994), 964–971 | MR | Zbl
[6] Optega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986
[7] Kuznetsov E. B., Shalashilin V. I., “Zadacha Koshi kak zadacha prodolzheniya resheniya po parametru”, Zh. vychisl. matem. i matem. fiz., 33:12 (1993), 1792–1805 | MR | Zbl
[8] Hairer E., Wanner G., Solving ordinary differential equations 2. Stiff and differential-algebraic problems, Springer, Berlin etc., 1991 | Zbl
[9] Kuznetsov E. B., Shalashilin V. I., “Reshenie differentsialno-algebraicheskikh uravnenii s vyborom nailuchshego argumenta”, Zh. vychisl. matem. i matem. fiz., 37:6 (1997), 711–722 | MR | Zbl