Numerical solution of the Rapoport–Leas equation using the method-of-lines and the DASSL code
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 11, pp. 1928-1935 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of the one dimensional oil displacement by injection of water in a laboratory experiments in a porous media. Under the assumptions of incompressibility of the fluids in the porous media and the mass conservation of the phases, the fractional flow theory leads to the Rapoport–Leas equation. The continuity of the pressure in the borders of the sample provides the boundary conditions for this parabolic semi-linear problem. The method-of-lines and DASSL code algorithm is propose, as a good alternative to the classical numerical techniques.
@article{ZVMMF_1998_38_11_a14,
     author = {L. \'Alvarez D{\'\i}az and C. Cunha},
     title = {Numerical solution of the {Rapoport{\textendash}Leas} equation using the method-of-lines and the {DASSL} code},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1928--1935},
     year = {1998},
     volume = {38},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a14/}
}
TY  - JOUR
AU  - L. Álvarez Díaz
AU  - C. Cunha
TI  - Numerical solution of the Rapoport–Leas equation using the method-of-lines and the DASSL code
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1928
EP  - 1935
VL  - 38
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a14/
LA  - en
ID  - ZVMMF_1998_38_11_a14
ER  - 
%0 Journal Article
%A L. Álvarez Díaz
%A C. Cunha
%T Numerical solution of the Rapoport–Leas equation using the method-of-lines and the DASSL code
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1928-1935
%V 38
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a14/
%G en
%F ZVMMF_1998_38_11_a14
L. Álvarez Díaz; C. Cunha. Numerical solution of the Rapoport–Leas equation using the method-of-lines and the DASSL code. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 11, pp. 1928-1935. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_11_a14/

[1] Rapoport L. A. and Leas W. J., “Properties of linear waterfloods”, Trans. AIME, 198 (1953), 139–148

[2] Lake L. W., Enhanced Oil Recovery, Prentice Hall, 1989

[3] Buckley K. E. and Leverett M. C., “Mechanism of fluid displacement in sands”, Trans. AIME, 146 (1942), 107–116

[4] Finlayson B. H., Numerical Methods for Problems with Moving Fronts, Ravenna Park Inc., 1994 | Zbl

[5] Randall J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser Verlag, 1992 | Zbl

[6] Gomes S. and Cunha C., Petrov–Galerkin and collocation methods using biorthogonal spline wavelets, Preprint IMECC-UNICAMP, RP 26/95

[7] Barenblat G. I., Entov V. H., Ryzhik V. M., Theory of Fluid Flows Through Natural Rocks, Kluwer Acad. Publ., 1990 | Zbl

[8] Zwillinger D., Handbook of Differential Equations, Acadi Press, New York, 1989 | Zbl

[9] Sanz-Serna J. M., “Convergence analysis of one-step schemes in the method of lines”, Appl. Math. and Comput., 31 (1993), 183–195 | DOI | MR

[10] Kee R. J. and Petzold L. R., A differential-algebraic equation formulation of the method of lines solution to systems of PDEs, SANDIA Report, SAND 868893, 1986

[11] Petzold L. R., A description of DASSL. A differential/algebraic solver, SANDIA Report, SAND 828637, 1982

[12] Hindmarsh A. C., “ODEPACK, a systematized collection of ODE solvers”, Scientific Computing, 1 (1983), 55–64 | MR

[13] Young L. C., “A study of spatial approximation for simulating fluid displacement in petroleum reservoirs”, Comput. Methods Appl. Mech. Eng., 47 (1984), 3–46 | DOI | Zbl

[14] Brenan K. E., Campbell S. L. and Petzold L. R., Numerical Solution of Initial Value Problems in Differential Algebraic Equations, Elsevier Publ. Co., 1989

[15] Alvarez L., Sanchez I., El uso de las ED As para la solution de algunas EDPs, Preprint IMECC-UNICAMP, RP 50/1997

[16] Tocci M. D., Kelley C. T., and Miller C. T., “Accurate and economical solution of the pressure-head form of Richard's equation by the method of lines”, Advances in Water Resources, 20 (1996), 1–14 | DOI

[17] Williams G. A., Miller C. T., Kelley C. T., and Tocci M. D., Approaches to modeling Richard's equation 2, Center for Multiphase Research News, CMR, Univ. North Carolina at Chapel Hill