@article{ZVMMF_1998_38_10_a8,
author = {A. I. Zadorin},
title = {Numerical solution of an equation with a small parameter on an infinite interval},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1671--1682},
year = {1998},
volume = {38},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a8/}
}
TY - JOUR AU - A. I. Zadorin TI - Numerical solution of an equation with a small parameter on an infinite interval JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1998 SP - 1671 EP - 1682 VL - 38 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a8/ LA - ru ID - ZVMMF_1998_38_10_a8 ER -
A. I. Zadorin. Numerical solution of an equation with a small parameter on an infinite interval. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 10, pp. 1671-1682. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a8/
[1] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958
[2] Abramov A. A., “O perenose usloviya ogranichennosti dlya nekotorykh sistem obyknovennykh lineinykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:4 (1961), 733–737 | MR | Zbl
[3] Birger E. S., Lyalikova N. B., “O nakhozhdenii dlya nekotorykh sistem obyknovennykh differentsialnykh uravnenii reshenii s zadannym usloviem na beskonechnosti”, Zh. vychisl. matem. i matem. fiz., 5:6 (1965), 979–990 | MR | Zbl
[4] Abramov A. A., Balla K., Konyukhova N. B., “Perenos granichnykh uslovii iz osobykh tochek dlya sistem obyknovennykh differentsialnykh uravnenii”, Soobsch. po vychisl. matem., VTs AN SSSR, M., 1981
[5] Konyukhova N. B., “K resheniyu kraevykh zadach na beskonechnom intervale dlya nekotorykh nelineinykh sistem obyknovennykh differentsialnykh uravnenii s osobennostyu”, Zh. vychisl. matem. i matem. fiz., 10:5 (1970), 1150–1163
[6] Birger E. S., “Ob otsenke pogreshnosti zameny usloviya ogranichennosti resheniya lineinogo differentsialnogo uravneniya na beskonechnom intervale”, Zh. vychisl. matem. i matem. fiz., 8:3 (1968), 674–678 | MR
[7] Konyukhova N. B., “Ob iterativnom reshenii nelineinykh kraevykh zadach, vydelyayuschikh malye resheniya nekotorykh sistem obyknovennykh differentsialnykh uravnenii s osobennostyu”, Zh. vychisl. matem. i matem. fiz., 14:5 (1974), 1221–1231 | Zbl
[8] Konyukhova N. B., “Ob ustoichivykh mnogoobraziyakh Lyapunova dlya avtonomnykh sistem nelineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 34:10 (1994), 1358–1379 | MR | Zbl
[9] Konyukhova N. B., “Gladkie mnogoobraziya Lyapunova i singulyarnye kraevye zadachi”, Soobsch. po vychisl. matem., VTs AN SSSR, M., 1996
[10] Klokov Yu. A., Kraevye zadachi s usloviem na beskonechnosti dlya uravnenii matematicheskoi fiziki, Riga, 1963
[11] Zakharov Yu. N., “Ob odnom metode resheniya uravneniya s kraevymi usloviyami na beskonechnosti”, Vychisl. tekhnologii, 2, no. 7, IVT SO RAN, Novosibirsk, 1993, 55–68
[12] Vasilev N. I., Klokov Yu. A., Osnovy teorii kraevykh zadach obyknovennykh differentsialnykh uravnenii, Riga, 1978
[13] Dorr F. W., Farter S. V., Shampine L. F., “Applications of the maximum principle to singular perturbation problems”, SIAM Review, 15:1 (1973), 43–87 | DOI | MR
[14] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989
[15] Zeldovich Ya. B., Barenblatt G. I., Librovich V. B. i dr., Matematicheskaya teoriya goreniya i vzryva, Nauka, M., 1980
[16] Zadorin A. I., Ignatev V. N., “Chislennoe reshenie kvazilineinogo singulyarno vozmuschennogo uravneniya vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 31:1 (1991), 157–160 | MR
[17] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248
[18] Kellog R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32:144 (1978), 1025–1039 | DOI | Zbl