A method of numerical integration for a system of ordinary differential equations with the use of the Hermitian interpolating polynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 10, pp. 1665-1670 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_10_a7,
     author = {S. M. Aul'chenko and A. F. Latypov and Yu. V. Nikulichev},
     title = {A method of numerical integration for a system of ordinary differential equations with the use of the {Hermitian} interpolating polynomials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1665--1670},
     year = {1998},
     volume = {38},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a7/}
}
TY  - JOUR
AU  - S. M. Aul'chenko
AU  - A. F. Latypov
AU  - Yu. V. Nikulichev
TI  - A method of numerical integration for a system of ordinary differential equations with the use of the Hermitian interpolating polynomials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1665
EP  - 1670
VL  - 38
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a7/
LA  - ru
ID  - ZVMMF_1998_38_10_a7
ER  - 
%0 Journal Article
%A S. M. Aul'chenko
%A A. F. Latypov
%A Yu. V. Nikulichev
%T A method of numerical integration for a system of ordinary differential equations with the use of the Hermitian interpolating polynomials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1665-1670
%V 38
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a7/
%G ru
%F ZVMMF_1998_38_10_a7
S. M. Aul'chenko; A. F. Latypov; Yu. V. Nikulichev. A method of numerical integration for a system of ordinary differential equations with the use of the Hermitian interpolating polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 10, pp. 1665-1670. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a7/

[1] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970

[2] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Nauka, M., 1966

[3] Dahlquist G., “A special stability problem for linear multistep methods”, BIT, 3 (1963), 27–43 | DOI | MR | Zbl

[4] Nikulichev Yu. V., Postroenie chislennykh metodov resheniya zhestkikh sistem obyknovennykh differentsialnykh uravnenii na osnove LR-metoda, Preprint No 2-87, ITPM SO AN SSSR, Novosibirsk, 1987

[5] Roberts S. M., Shipmen J. S., “Solution of Troesch's two-point boundary value problem by a combination of techniques”, J. Comput. Phys., 10:2 (1972), 232–241 | DOI | Zbl

[6] Braison A.,Xo Yu Shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972

[7] Gear C. W., “The automatic integration of ordinary differential equations”, Comput. and Structures, 20:6 (1985), 915–920 | DOI

[8] Hairer E., Wanner G., Solving ordinary differential equations, v. II, Springer Ser. Comput. Math., 14, Stiff and differential-algebraic problems, Springer, Berlin, 1991 | MR | Zbl