Domain decomposition method for the problem of bending heterogeneous plate
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 10, pp. 1758-1766 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_10_a17,
     author = {G. P. Astrakhantsev},
     title = {Domain decomposition method for the problem of bending heterogeneous plate},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1758--1766},
     year = {1998},
     volume = {38},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a17/}
}
TY  - JOUR
AU  - G. P. Astrakhantsev
TI  - Domain decomposition method for the problem of bending heterogeneous plate
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1758
EP  - 1766
VL  - 38
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a17/
LA  - ru
ID  - ZVMMF_1998_38_10_a17
ER  - 
%0 Journal Article
%A G. P. Astrakhantsev
%T Domain decomposition method for the problem of bending heterogeneous plate
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1758-1766
%V 38
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a17/
%G ru
%F ZVMMF_1998_38_10_a17
G. P. Astrakhantsev. Domain decomposition method for the problem of bending heterogeneous plate. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 10, pp. 1758-1766. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a17/

[1] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, OVM AN SSSR, M., 1983

[2] Dryja M., Widlund O., “Towards a unified theory of domain decomposition algotitms for elliptic problems”, 3th Internat. Sympos. on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1989, 3–21

[3] Astrakhantsev G. P., “Raznostnye analogi potentsialov, metody fiktivnykh komponent i dekompozitsii”, Vestn. SPb un-ta. Ser. 1, 1996, no. 1(1), 3–8 | MR

[4] Zhang X., “Multilevel Schwarz method for the biharmoriic Dirichlet problem”, SIAM J. Sci. Comput., 15:3 (1994), 621–644 | DOI | MR | Zbl

[5] Oswald P., “Hierarchial conforming finite element method for the biharmonic equation”, SIAM J. Numer. Analys., 29 (1992), 1610–1625 | DOI | MR | Zbl

[6] Astrakhantsev G. P., “O chislennom reshenii zadachi Dirikhle v proizvolnoi oblasti”, Raznostnye i variatsionno-raznostnye metody, 2, VTs SO AN SSSR, Novosibirsk, 1977, 63–72 | MR

[7] Sarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980

[8] Yserentant H., “On the multilevel splitting of finite element spaces”, Numer. Math., 49 (1986), 379–412 | DOI | MR | Zbl

[9] Grizvard P., Elliptic problems in non smooth domain, Pitman, Boston, 1985 | Zbl

[10] Bramble J. H., Pasiak J. E., Schatz A. H., “The construction of preconditioners for elliptic problems by substructuring. I”, Math. Comput., 47:175 (1986), 103–134 | DOI | MR

[11] Astrakhantsev G. P., “Metod fiktivnykh oblastei dlya ellipticheskogo uravneniya vtorogo poryadka s estestvennymi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 18:1 (1978), 118–125 | MR | Zbl