Application of high-resolution schemes in the modeling of ionization waves in gas discharges
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 10, pp. 1721-1731 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1998_38_10_a13,
     author = {Yu. K. Bobrov and Yu. V. Yurgelenas},
     title = {Application of high-resolution schemes in the modeling of ionization waves in gas discharges},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1721--1731},
     year = {1998},
     volume = {38},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a13/}
}
TY  - JOUR
AU  - Yu. K. Bobrov
AU  - Yu. V. Yurgelenas
TI  - Application of high-resolution schemes in the modeling of ionization waves in gas discharges
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1998
SP  - 1721
EP  - 1731
VL  - 38
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a13/
LA  - ru
ID  - ZVMMF_1998_38_10_a13
ER  - 
%0 Journal Article
%A Yu. K. Bobrov
%A Yu. V. Yurgelenas
%T Application of high-resolution schemes in the modeling of ionization waves in gas discharges
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1998
%P 1721-1731
%V 38
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a13/
%G ru
%F ZVMMF_1998_38_10_a13
Yu. K. Bobrov; Yu. V. Yurgelenas. Application of high-resolution schemes in the modeling of ionization waves in gas discharges. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 38 (1998) no. 10, pp. 1721-1731. http://geodesic.mathdoc.fr/item/ZVMMF_1998_38_10_a13/

[1] Davies A. J., “Discharge simulation”, Proc. IEE, 133:4 (1986), 217–240, Pt. A

[2] Morrow R., “Numerical solution of hyperbolic equations for electric drift in strongly nonuniform electric fields”, J. Comput. Phys., 43:1 (1981), 1–15 | DOI | Zbl

[3] Boris J. P., Book D. L., “Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works”, J. Comput. Phys., 11:1 (1973), 38–69 | DOI | Zbl

[4] Morrow R., Cram L. E., “Flux-corrected transport and diffusion on a non-uniform mesh”, J. Comput. Phys., 57:1 (1985), 129–136 | DOI | MR

[5] Kunhardt E. E., Wu C.-H., “Towards a more accurate flux-corrected transport algorithm”, J. Comput. Phys., 68:1 (1987), 127–150 | DOI | MR | Zbl

[6] Leonard B. P., “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection”, Comput. Meth. in Appl. Mech. Engng., 88:1 (1991), 17–74 | DOI | MR | Zbl

[7] Munz C. D., “On the numerical dissipation of high resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 77:1 (1988), 18–39 | DOI | MR | Zbl

[8] Radvogin Yu. B., Kvazimonotonnye mnogomernye raznostnye skhemy vtorogo poryadka tochnosti, Preprint No 19, IP Matem. AN SSSR, M., 1991, 23 pp.

[9] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl

[10] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[11] Van Leer B., “Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection”, J. Comput. Phys., 23:3 (1977), 276–299 | DOI | Zbl

[12] Van Leer B., “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI

[13] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl

[14] Roe P. L., “Some contributions to the modelling of discontimuous flows”, Lect. Appl. Math., 22, 1985, 163–193 | MR | Zbl

[15] Sweby P. K., “High resolution TVD schemes using flux limiters”, Lect. Appl. Math., 22, 1985, 289–309 | MR | Zbl

[16] Courant R., Issacson E., Rees M., “On the solution of nonlinear hyperbolic differential equations by finite differences”, Communs Pure and Appl. Math., 5:3 (1952), 243–255 | DOI | MR | Zbl

[17] Lax P., Wendroff B., “Systems of conservation laws”, Communs Pure and Appl. Math., 13:2 (1960), 217–237 | DOI | MR | Zbl

[18] Chakravarthy S. R., Osher S., “High-resolution application of the Osher upwind scheme for the Euler equations”, 6th AIAA Comput. Fluid Dynamic Conf., 1983. AIAA paper 83-1943, 363–372

[19] Huynh H. T., “Accurate upwind schemes for the Euler equations”, 26th AIAA Fluid Dynam. Conf., 1995. AIAA paper 95-1737, 1022–1039

[20] Djakov A. F., Bobrov Yu. K., Scherbakov Yu. V., Yurghelenas Yu. V., “Simulation of positive streamers in air. II. Positive streamer propagation in a non-uniform field”, Proc. XXIII Internat. Conf. Phenomena in Ionized Gases (17–22 July 1997, Tolouse, France), v. 2, Tolouse, 1997, 210–211

[21] Djakov A. F., Bobrov Yu. K., Solntsev L. A., Yurghelenas Yu. V., “Simulation of positive streamers in air. I. Two-step algorithm based on van Leer type upwind schemes”, Proc. XXIII Internat. Conf. Phenomena in Ionized Gases (17–22 July 1997, Tolouse, France), v. 2, Tolouse, 1997, 208–209

[22] Grange F., Soulem N., Loiseau J. F., Spyrou N., “Numerical and experimental determination of ionizing front velocity in a DC point-to-plane corona discharge”, J. Phys. D, 28:8 (1995), 1619–1629 | DOI

[23] Van Leer B., “Towards the ultimate conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow”, J. Comput. Phys., 23:3 (1977), 263–275 | DOI | Zbl

[24] Fromm J. E., “A method for reducing dispersion in convective difference schemes”, J. Comput. Phys., 3:2 (1968), 176–189 | DOI | Zbl