Finite-difference analysis of the MHD Stokes problem for convective flow past a vertical infinite plate in a rotating fluid with Hall currents
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 9, pp. 1138-1142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stokes problem on convective flow for an impulsively started infinite vertical plate in a rotating fluid system in the presence of a strong transverse magnetic field has been considered. The coupled non-linear equations are solved by finite difference method. Results, for velocity and temperature are shown graphically. The results are discussed in terms of parameter $m$ (the Hall parameter), $E$ (the rotation parameter) and ${\rm Gr}$ (the Grashof number, ${\rm Gr}>0$, cooling of the plate by free convection currents, ${\rm Gr}<0$, heating of the plate by free convection currents).
@article{ZVMMF_1997_37_9_a13,
     author = {N. Chaturvedi and M. Kinyanjui and S. M. Uppal},
     title = {Finite-difference analysis of the {MHD} {Stokes} problem for convective flow past a vertical infinite plate in a rotating fluid with {Hall} currents},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1138--1142},
     year = {1997},
     volume = {37},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_9_a13/}
}
TY  - JOUR
AU  - N. Chaturvedi
AU  - M. Kinyanjui
AU  - S. M. Uppal
TI  - Finite-difference analysis of the MHD Stokes problem for convective flow past a vertical infinite plate in a rotating fluid with Hall currents
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1997
SP  - 1138
EP  - 1142
VL  - 37
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_9_a13/
LA  - en
ID  - ZVMMF_1997_37_9_a13
ER  - 
%0 Journal Article
%A N. Chaturvedi
%A M. Kinyanjui
%A S. M. Uppal
%T Finite-difference analysis of the MHD Stokes problem for convective flow past a vertical infinite plate in a rotating fluid with Hall currents
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1997
%P 1138-1142
%V 37
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_9_a13/
%G en
%F ZVMMF_1997_37_9_a13
N. Chaturvedi; M. Kinyanjui; S. M. Uppal. Finite-difference analysis of the MHD Stokes problem for convective flow past a vertical infinite plate in a rotating fluid with Hall currents. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 9, pp. 1138-1142. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_9_a13/

[1] Greenspam H. P., The theory of rotating fluids, Univ. Press, Cambridge, 1960

[2] Gupta A. S., “Hydromagnetic flow past a rotating porous flat plate”, Phys. Fluids, 15 (1972), 930–933 | DOI

[3] Soundlgekar V. M., Pop I., “Hydromagnetic free convection flow past a vertical infinite porous plate in a rotating fluid”, Z. angew. Math. and Mech., 53 (1973), 718–720 | DOI

[4] Raptis A., Perdikis C. P., Tzivanidis G. J., “MHD natural convection and mass transfer through a horizontal porous rotating channel”, Acta Phys. Hungarica, 54 (1983), 213–215

[5] Chaturvedi N., “Hydromagnetic flow past a uniformly started inifinite porous plate with constant suction”, J. Sci. Res., 9:2–3 (1987), 89–93

[6] Stewartson K., “On the impulsive motion of a flat plate in a viscous fluid”, Quart. J. Mech. and Appl. Math., 4 (1951), 182 | DOI | MR | Zbl

[7] Soundalgekar V. M., “Free convection effects on the Stokes problem for an infinite vertical plate”, J. Heat Transfer., 99 (1977), 499 | DOI

[8] Rossow V. J., On the Flow of electrically conducting fluid over a flat plate in the presence of a transverse magnetic field, NASA rep., No 1358, 1958 | Zbl

[9] Soundalgekar V. M., Gupta S. K., Aramke R. N., “Free convection effects on MHD Stokes problem for a vertical plate”, J. Nucl. Eng. Design, 51 (1978), 403 | DOI

[10] Cowling T. G., Magnetohydrodynamics, Interscience, New York, 1957 | MR