An analysis of a difference scheme approximating a third boundary-value problem for a second-order nonlinear differential equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 8, pp. 951-957 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1997_37_8_a7,
     author = {V. S. Shcheglik},
     title = {An analysis of a difference scheme approximating a third boundary-value problem for a second-order nonlinear differential equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {951--957},
     year = {1997},
     volume = {37},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_8_a7/}
}
TY  - JOUR
AU  - V. S. Shcheglik
TI  - An analysis of a difference scheme approximating a third boundary-value problem for a second-order nonlinear differential equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1997
SP  - 951
EP  - 957
VL  - 37
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_8_a7/
LA  - ru
ID  - ZVMMF_1997_37_8_a7
ER  - 
%0 Journal Article
%A V. S. Shcheglik
%T An analysis of a difference scheme approximating a third boundary-value problem for a second-order nonlinear differential equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1997
%P 951-957
%V 37
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_8_a7/
%G ru
%F ZVMMF_1997_37_8_a7
V. S. Shcheglik. An analysis of a difference scheme approximating a third boundary-value problem for a second-order nonlinear differential equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 8, pp. 951-957. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_8_a7/

[1] Lazarov R. D., Makarov V. L., Samarskii A. A., “Primenenie tochnykh raznostnykh skhem dlya postroeniya i issledovaniya raznostnykh skhem na obobschennykh resheniyakh”, Matem. sb., 117(159):4 (1982), 469–480 | MR | Zbl

[2] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Nauka, M., 1987

[3] Samarskii A. A., “Issledovanie tochnosti raznostnykh skhem dlya zadach s obobschennymi resheniyami”, Aktualnye probl. matem. fiz. i vychisl. matem., Nauka, M., 1984, 174–183 | MR

[4] Gavrilyuk I. P., Lazarov R. D., Makarov V. L. i dr., “Otsenki skorosti skhodimosti raznostnykh reshenii k resheniyam vtoroi kraevoi zadachi dlya uravnenii chetvertogo poryadka pri minimalnykh trebovaniyakh k gladkosti”, Dokl. AN USSR. Ser. A, 1983, no. 2, 6–9 | MR | Zbl

[5] Makarov V. L., Slushaenko N. V., “Soglasovannye otsenki skorosti skhodimosti metoda setok dlya kvazilineinykh uravnenii s bolshoi konstantoi Lipshitsa”, Differents. ur-niya, 1983, no. 7, 1246–1250 | MR | Zbl

[6] Matus P. P., Moskalkov M. N., Scheglik B. C., “Soglasovannye otsenki skorosti skhodimosti metoda setok dlya nelineinogo uravneniya vtorogo poryadka s obobschennymi resheniyami”, Differents. ur-niya, 1995, no. 7, 1219–1226 | MR

[7] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl