@article{ZVMMF_1997_37_6_a5,
author = {K. A. Kochetkov and P. D. Shirkov},
title = {$L$-decremented {ROW} method of third-order accuracy},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {699--710},
year = {1997},
volume = {37},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_6_a5/}
}
TY - JOUR AU - K. A. Kochetkov AU - P. D. Shirkov TI - $L$-decremented ROW method of third-order accuracy JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1997 SP - 699 EP - 710 VL - 37 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_6_a5/ LA - ru ID - ZVMMF_1997_37_6_a5 ER -
K. A. Kochetkov; P. D. Shirkov. $L$-decremented ROW method of third-order accuracy. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 6, pp. 699-710. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_6_a5/
[1] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR
[2] Hairer E., Norsett S., Wanner J., Solving of ordinary differential equations. Part 1: Monsfiff problems. Part 2: Stiff problems, Springer, Berlin, 1987
[3] Artemev S., Shkurko I., “Algoritm peremennogo poryadka i shaga, osnovannyi na metodakh tipa Rozenbroka”, Zh. vychisl. matem. i matem fiz., 26:8 (1986), 1256–1258 | MR
[4] Dnestrovskaya E., Kalitkin N., Kusmina L., “$L_q$-decreasing monotonic schemes with complex coefficients and applications to complicated PDE systems”, Appl. Numer. Math., 15 (1994), 327–340 | DOI | MR | Zbl
[5] Guzhev D., Kalitkin N., Shaifert P., Shirkov P., “Chislennye metody dlya zadach khimicheskoi kinetiki s diffuziei”, Matem. modelirovanie, 4:1 (1992), 98–110
[6] Guzhev D., Kalitkin N., “Uravnenie Byurgersa – test dlya chislennykh metodov”, Matem. modelirovanie, 7:4 (1995), 99–127 | MR
[7] Kochetkov K., Shirkov P., Extrapolated solution of Van der Pol equation and $L$-decrementation of ROW methods, Preprint No 28, Inst. Math. Model. RAS, M., 1994
[8] Shirkov P., “Optimalnye $L$-zatukhayuschie skhemy Rozenbroka s kompleksnymi koeffitsientami dlya zhestkikh sistem ODU”, Matem. modelirovanie, 4:8 (1992), 45–57 | MR
[9] Guzhev D. S., Shirkov P. D., “Rosenbrock schemes with complex coefficients for stiff differential equations”, Math. Model. and Appl. Math., Elsevier Sci. Publs., Amsterdam, 1992, 215–220
[10] Shirkov P., Some topics about $L$-decrementation of one-step methods, Preprint No 2, De Matem. Inst., Univ. i Trondheim, Trondheim, 1994 | Zbl
[11] Butcher J., The numerical analysis of ordinary differential equations (Runge–Kutta and general linear methods), John Wiley Sons Ltd., London, 1987 | MR | Zbl
[12] Gear C. W., Numerical initial value problem in ordinary differential eguations, Prentice-Hall, Englewood Cliffs, 1971 | MR | Zbl
[13] Dahlquist G., Bjork A., Andersson N., Numerical methods, Prentice-Hall, Englewood Cliffs, 1974 | MR
[14] Gustafsson K., Control of error and convergence in ODE solvers, PhD thesis, Lund Institute of Technol., 1992
[15] Marchuk G., Shaydurov V., Increasing of accuracy of the projective-difference schemes, Lect. Notes in Computer Science, 11, Springer, Berlin, 1974 | MR
[16] Shirkov P. D., “$L$-Ustoichivost diagonalno-neyavnykh skhem Runge–Kutty i metodov Rozenbroka”, Zh. vychisl. matem. i matem. fiz., 32:9 (1992), 1422–1432 | MR | Zbl
[17] Kochetkov K., Shirkov P., $L$-decremented ROW methods. Part 1, Preprint No 1, Inst. for Math. Model. RAS, M., 1995
[18] Kraaijevanger J., “Contractivity of Runge–Kutta methods”, BIT, 31 (1991), 482–528 | DOI | MR | Zbl