An adaptiv grid-projection method for elliptic problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 5, pp. 572-586 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1997_37_5_a7,
     author = {A. G. Sleptsov and Yu. I. Shokin},
     title = {An adaptiv grid-projection method for elliptic problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {572--586},
     year = {1997},
     volume = {37},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_5_a7/}
}
TY  - JOUR
AU  - A. G. Sleptsov
AU  - Yu. I. Shokin
TI  - An adaptiv grid-projection method for elliptic problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1997
SP  - 572
EP  - 586
VL  - 37
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_5_a7/
LA  - ru
ID  - ZVMMF_1997_37_5_a7
ER  - 
%0 Journal Article
%A A. G. Sleptsov
%A Yu. I. Shokin
%T An adaptiv grid-projection method for elliptic problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1997
%P 572-586
%V 37
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_5_a7/
%G ru
%F ZVMMF_1997_37_5_a7
A. G. Sleptsov; Yu. I. Shokin. An adaptiv grid-projection method for elliptic problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 5, pp. 572-586. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_5_a7/

[1] Babuska I., Miller A., “The post-processing approach in the finite element method. I; III”, Internat. J. Numeric. Meth. Engng., 20 (1984), 1085–1129 ; 2311–2324 | DOI | Zbl

[2] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[3] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[4] Atlas I., Stephenson J. W., “A two-dimensional adaptive mesh generation method”, J. Comput. Phys., 94 (1991), 201–224 | DOI | MR

[5] Demkowicz L., Oden J. T., Rachovicz W. et al., “Toward a universal $h-p$ adaptive finite element strategy. 1–3”, Comput. Meth. Appl. Mech. and Engng., 77 (1989), 79–212 | DOI | MR

[6] Fried I., “Condition of finite element matrices generated from nonuniform meshes”, AIAA Journal, 10 (1971), 219–221 | DOI

[7] Jiang B.-N., Carey G. F., “Adaptive refinement for least-squares finite elements with element-by-element conjugate gradient solution”, Internat. J. Numeric. Meth. Engng., 24 (1987), 569–580 | DOI | MR | Zbl

[8] Oden J. T., Demkowicz L., “$h-p$ adaptive finite element methods in computational fluid dynamics”, Comput. Meth. Appl. Mech. and Engng., 19 (1991), 11–40 | DOI | MR

[9] Sleptsov A. G., “Grid-projection solution of elliptic problem for a irregular grid”, Russ. J. Numer. Analys. Math. Modelling, 8:6 (1993), 501–525 | MR

[10] Young D. P., Melvin R. G., Bieterman M. B. et al., “A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics”, J. Comput. Phys., 92 (1991), 1–66 | DOI | MR | Zbl

[11] Bakhvalov N. S., “Iterative methods for stiff elliptic problems”, AMCA-95, Internat. Conf., Abstracts (Novosibirsk, June 20–24, 1995), 34 | MR

[12] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl

[13] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[14] Shokin Yu. I., Sleptsov A. G., “Projectional-mesh method with small angles in cells”, Russ. J. Numer. Analys. Math. Modelling, 10:5 (1995), 449–462 | DOI | MR | Zbl

[15] Shokin Yu. I., Sleptsov A. G., “An adaptive method for solving two-dimensional linear elliptical problems”, AMCA-95, Internat. Conf., Abstracts (Novosibirsk, June 20–24, 1995), 302

[16] Sleptsov A. G., Shokin Yu. I., “Adaptivnyi proektsionno-setochnyi metod dlya ellipticheskikh zadach”, Dokl. RAN, 347:2 (1995), 164–167 | MR

[17] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, Izd-vo OVM AN SSSR, M., 1983 | MR | Zbl

[18] Matsokin A. M., Nepomnyaschikh S. V., “Alterniruyuschii metod Shvartsa v podprostranstvakh”, Izv. vuzov. Matematika, 1985, no. 10, 61–66 | MR | Zbl

[19] Nepomnyaschikh S. V., Dekompozitsiya oblasti i metod Shvartsa v podoblasti dlya priblizhennogo resheniya ellipticheskikh kraevykh zadach, Dis. ...kand. fiz.-matem. nauk, VTs SO AN SSSR, Novosibirsk, 1986

[20] Smelov V. V., “Obosnovanie iteratsionnogo protsessa po podoblastyam dlya zadach teorii perenosa v nechetnom $P_{2N+1}$-priblizhenii”, Zh. vychisl. matem. i matem. fiz., 22:1 (1982), 151–162 | MR | Zbl

[21] Gardner M., Puteshestvie vo vremeni, Mir, M., 1990 | MR

[22] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR

[23] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M.–L., 1962 | MR

[24] Sleptsov A. G., “On the convergence acceleration of linear iterations”, Russ. J. Theor. and Appl. Mech., 1 (1991), 74–83

[25] Sleptsov A. G., “On the convergence acceleration of linear iterations, II”, Russ. J. Theor. and Appl. Mech., 1 (1991), 213–220

[26] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1979 | MR

[27] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1979 | MR

[28] Ascher U. M., Mattheij R. M. M., Russell R. D., Numerical solution of boundary value problems for ordinary differential equations, Prentice Hall Series in Comput. Math., 1988 | MR