An algorithm for the construction of a nonnegative cubic spline
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 4, pp. 387-394
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_1997_37_4_a0,
author = {V. A. Kirushev and V. N. Malozemov},
title = {An algorithm for the construction of a nonnegative cubic spline},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {387--394},
year = {1997},
volume = {37},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_4_a0/}
}
TY - JOUR AU - V. A. Kirushev AU - V. N. Malozemov TI - An algorithm for the construction of a nonnegative cubic spline JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1997 SP - 387 EP - 394 VL - 37 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_4_a0/ LA - ru ID - ZVMMF_1997_37_4_a0 ER -
V. A. Kirushev; V. N. Malozemov. An algorithm for the construction of a nonnegative cubic spline. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 4, pp. 387-394. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_4_a0/
[1] Dauner Reinsch C. H., “An analysis of two algorithms for shape-preserving cubic spline interpolation”, IMA J. Numer. Analys., 9 (1989), 299–314 | DOI | MR | Zbl
[2] Malozemov B. H., Pevnyi A. B., Polinomialnye splainy, Izd-vo AGU, L., 1986 | Zbl
[3] Opfer G., Oberle H. J., “The derivation of cubic splines with obstacles by methods of optimization and optimal control”, Numer. Math., 52 (1988), 17–31 | DOI | MR | Zbl
[4] Kirushev B. A., Malozemov V. H., “Interpolyatsiya polozhitelnykh dannykh pri pomoschi neotritsatelnykh naturalnykh kubicheskikh splainov”, Vestn. SPb un-ta. Ser. 1, 1995, no. 2(8), 25–30 | MR | Zbl
[5] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl