Calculation of the minimal embedding dimension of a chaotic attractor on the basis of local topological analysis of phase trajectories
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 3, pp. 315-324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1997_37_3_a5,
     author = {V. F. Daǐludenko and A. M. Krot},
     title = {Calculation of the minimal embedding dimension of a chaotic attractor on the basis of local topological analysis of phase trajectories},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {315--324},
     year = {1997},
     volume = {37},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_3_a5/}
}
TY  - JOUR
AU  - V. F. Daǐludenko
AU  - A. M. Krot
TI  - Calculation of the minimal embedding dimension of a chaotic attractor on the basis of local topological analysis of phase trajectories
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1997
SP  - 315
EP  - 324
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_3_a5/
LA  - ru
ID  - ZVMMF_1997_37_3_a5
ER  - 
%0 Journal Article
%A V. F. Daǐludenko
%A A. M. Krot
%T Calculation of the minimal embedding dimension of a chaotic attractor on the basis of local topological analysis of phase trajectories
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1997
%P 315-324
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_3_a5/
%G ru
%F ZVMMF_1997_37_3_a5
V. F. Daǐludenko; A. M. Krot. Calculation of the minimal embedding dimension of a chaotic attractor on the basis of local topological analysis of phase trajectories. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 3, pp. 315-324. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_3_a5/

[1] Shuster G., Determinirovannyi khaos: Vvedenie, Mir, M., 1988 | MR | Zbl

[2] Berzhe P., Pomo I., Vidal K., Poryadok v khaose. O determinirovannom podkhode k turbulentnosti, Mir, M., 1991 | MR

[3] Malinetskii G. G., Potapov A. B., Rakhmanov A. I., Ogranicheniya vozmozhnostei rekonstruktsii attraktora dlya khaoticheskikh dinamicheskikh sistem, Preprint No 10, IPMatem. RAN, M., 1993

[4] Potapov A. B., Krivizna rekonstruktsii po vremennym ryadam i “estestvennoe vremya” dlya khaoticheskikh dinamicheskikh sistem, Preprint No 11, IPMatem. RAN, M., 1993

[5] Malinetskii G. G., Potapov A. B., “O vychislenii razmernosti strannykh attraktorov”, Zh. vychisl. matem. i matem. fiz., 28:7 (1988), 1021–1037 | MR

[6] Abarbanel H. D. I., Brown R., Sidorowich J. J., Tsimring L. Sh., “The analysis of observed chaotic data in physical systems”, Rev. Mod. Phys., 65:4 (1993), 1331–1392 | DOI | MR

[7] Nikolis G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1978

[8] Khaken G., Informatsiya i samoorganizatsiya. Makroskopicheskii podkhod k slozhnym sistemam, Mir, M., 1991 | MR

[9] Malinetskii G. G., Tsertsvadze G. Z., “Issledovanie lyapunovskogo spektra uravneniya Kuramoto–Tsuzuki”, Zh. vychisl. matem. i matem. fiz., 33:7 (1993), 1043–1053 | MR

[10] Goldberger E. L., Rigni D. R., Uest B. Dzh., “Khaos i fraktaly v fiziologii cheloveka”, V mire nauki, 1990, no. 4, 25–33

[11] Farmer J. D., Sidorowich J. J., “Predicting chaotic time series”, Phys. Rev. Letts, 59:8 (1987), 845–849 | DOI | MR

[12] Casdagli M., “Nonlinear prediction of chaotic time series”, Physica D, 35:3 (1989), 335–356 | DOI | MR | Zbl

[13] Kulikov M. A., “Ispolzovanie metodov nelineinoi dinamiki dlya vyyavleniya i opisaniya khaoticheskoi determinirovannoi sostavlyayuschei EEG”, Biofizika, 38:2 (1993), 314–322

[14] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[15] Maikov A. R., Sveshnikov A. G., “Konservativnye raznostnye skhemy dlya nestatsionarnykh uravnenii Maksvella v trekhmernom sluchae”, Zh. vychisl. matem. i matem. fiz., 33:9 (1993), 1352–1367 | MR

[16] Takens F., “Detecting strange attractors in turbulence”, Dynamical Systems and Turbulence, Lect. Notes in Math., 898, Springer, Berlin, 1981, 366–381 | MR

[17] Pawelzik K., Schuster H. G., “Unstable periodic orbits and prediction”, Phys. Rev. A, 43:4 (1991), 1808–1812 | DOI

[18] Liebert W., Pawelzik K., Schuster H. G., “Optimal embedding of chaotic attractor from topological consideration”, Europhys. Letts, 14:6 (1991), 521–526 | DOI | MR

[19] Čtenys A., Pyragas K. “Estimation of the number of degrees of freedom from chaotic time series”, Phys. Letts. A, 129:4 (1988), 227–230 | DOI

[20] Sugihara G., May R. M., “Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series”, Nature, 344:6268 (1990), 734–741 | DOI

[21] Ott E., Grebogi C., Yorke J. A., “Controlling chaos”, Phys. Rev. Letts, 64:11 (1990), 1196–1199 | DOI | MR | Zbl

[22] Grassberger P., Procaccia I., “Characterization of strange attractors”, Phys. Rev. Letts, 50:5 (1983), 346–349 | DOI | MR

[23] Bauer M., Heng H., Martienssen W., “Characterization of spatiotemporal chaos from time series”, Phys. Rev. Letts, 71:4 (1993), 521–524 | DOI

[24] Casdagli M., Eubank S., Farmer J. D., Gibson J., “State space reconstruction in the presence of noise”, Physica D, 51:1–3 (1991), 52–98 | DOI | MR | Zbl

[25] Farmer J. D., “Chaotic attractor of an infinite-dimensional dynamical systems”, Physica D, 4:3 (1982), 366–393 | DOI | MR | Zbl

[26] Mackey M. C., Glass L., “Oscillation and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI