A projective-iterative scheme for determining the amplitudes of discrete sources on the basis of dissipative matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 2, pp. 223-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1997_37_2_a11,
     author = {Yu. A. Eremin and A. G. Sveshnikov},
     title = {A projective-iterative scheme for determining the amplitudes of discrete sources on the basis of dissipative matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {223--229},
     year = {1997},
     volume = {37},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_2_a11/}
}
TY  - JOUR
AU  - Yu. A. Eremin
AU  - A. G. Sveshnikov
TI  - A projective-iterative scheme for determining the amplitudes of discrete sources on the basis of dissipative matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1997
SP  - 223
EP  - 229
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_2_a11/
LA  - ru
ID  - ZVMMF_1997_37_2_a11
ER  - 
%0 Journal Article
%A Yu. A. Eremin
%A A. G. Sveshnikov
%T A projective-iterative scheme for determining the amplitudes of discrete sources on the basis of dissipative matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1997
%P 223-229
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_2_a11/
%G ru
%F ZVMMF_1997_37_2_a11
Yu. A. Eremin; A. G. Sveshnikov. A projective-iterative scheme for determining the amplitudes of discrete sources on the basis of dissipative matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 2, pp. 223-229. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_2_a11/

[1] Eremin Yu. A., Sveshnikov A. G., Metod diskretnykh istochnikov v zadachakh elektromagnitnoi difraktsii, Izd-vo Mosk. un-ta, M., 1992

[2] Eremin Yu. A., Orlov N. V., Sveshnikov A. G., “Analiz slozhnykh zadach difraktsii na osnove metoda diskretnykh istochnikov”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 918–934 | MR | Zbl

[3] Eremin Yu. A., Sveshnikov A. G., “Metod diskretnykh istochnikov v teorii rasseyaniya”, Vestn. Mosk. unta. Ser. 15. Vychisl. matem. i kibernetika, 1992, no. 4, 3–14 | MR

[4] Eremin Yu. A., Sveshnikov A. G., “Kvazireshenie vektornykh zadach difraktsii na ekranakh na osnove iteratsionnykh metodov”, Zh. vychisl. matem. i matem. fiz., 31:10 (1991), 1536–1543 | MR

[5] Eremin Yu. A., Sveshnikov A. G., “Iteratsionnyi metod kvaziresheniya v zadachakh difraktsii na dielektricheskikh telakh”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 99–105 | MR

[6] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[7] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[8] Saad Y., Shultz M. H., “GMRES: A generalised minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 7:3 (1986), 856–869 | DOI | MR | Zbl