@article{ZVMMF_1997_37_11_a8,
author = {V. A. Kirushev and V. N. Malozemov and A. B. Pevnyǐ},
title = {The dragon's tail},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1362--1369},
year = {1997},
volume = {37},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_11_a8/}
}
V. A. Kirushev; V. N. Malozemov; A. B. Pevnyǐ. The dragon's tail. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 11, pp. 1362-1369. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_11_a8/
[1] Opfer G., Oberle H. J., “The derivation of cubic splines with obstacles by methods of optimization and optimal control”, Numer. Math., 52 (1988), 17–31 | DOI | MR | Zbl
[2] Dauner H., Reinsch C. H., “An analysis of two algorithms for shape-preserving cubic spline interpolation”, IMA J. Numer. Analys., 9 (1989), 299–314 | DOI | MR | Zbl
[3] Kirushev B. A., Malozemov B. H., “Interpolyatsiya polozhitelnykh dannykh pri pomoschi neotritsatelnykh naturalnykh kubicheskikh splainov”, Vestn. SPb. un-ta. Ser 1, 1995, no. 2, 25–30 | MR | Zbl
[4] Kirushev V. A., Malozemov V. N., Ob odnom algoritme postroeniya neotritsatelnogo kubicheskogo splaina, interpoliruyuschego polozhitelnyeznacheniya, Dep. v VINITI 13.02.1995, No 404-B95, 18 pp.
[5] Kirushev V. A., Malozemov V. N., Pevnyi A. B., “The dragon tail”, Intemat. Conf. Optimizat. Finite Element Approximations, Abstracts, St.-Petersburg, 1995, 61
[6] Akhiezer N. I., Lektsii po variatsionnomu ischisleniyu, Nauka, M., 1955 | Zbl