Iterative solution of strongly nonsymmetric systems of linear algebraic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 11, pp. 1283-1293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1997_37_11_a0,
     author = {M. A. Botchev and L. A. Krukier},
     title = {Iterative solution of strongly nonsymmetric systems of linear algebraic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1283--1293},
     year = {1997},
     volume = {37},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_11_a0/}
}
TY  - JOUR
AU  - M. A. Botchev
AU  - L. A. Krukier
TI  - Iterative solution of strongly nonsymmetric systems of linear algebraic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1997
SP  - 1283
EP  - 1293
VL  - 37
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_11_a0/
LA  - ru
ID  - ZVMMF_1997_37_11_a0
ER  - 
%0 Journal Article
%A M. A. Botchev
%A L. A. Krukier
%T Iterative solution of strongly nonsymmetric systems of linear algebraic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1997
%P 1283-1293
%V 37
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_11_a0/
%G ru
%F ZVMMF_1997_37_11_a0
M. A. Botchev; L. A. Krukier. Iterative solution of strongly nonsymmetric systems of linear algebraic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 37 (1997) no. 11, pp. 1283-1293. http://geodesic.mathdoc.fr/item/ZVMMF_1997_37_11_a0/

[1] Bochev M. A., Krukier L. A., “Poperemenno-treugolnoe kososimmetricheskoe pereobuslavlivanie lineinykh sistem v chislennom modelirovanii protsessov dvizhuscheisya zhidkosti pri bolshikh chislakh Reinoldsa”, Vychisl. tekhnol., 4, no. 10, IVTSO RAN, Novosibirsk, 1995, 60–68

[2] Vorst H. A. van der, “Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems”, J. Comput. Phys., 44 (1981), 1–19 | DOI | MR | Zbl

[3] Elman H.C., “Relaxed and stabilized incomplete factorizations for nonselfadjoint linear systems”, BIT (Dan.), 29:4 (1989), 890–915 | DOI | MR | Zbl

[4] Saad Y., Schults M. H., “GMRES: A generalized minimal residual method for solving nonsymmetric linear systems”, SIAM. J. Sci. Statist. Comput., 7 (1986), 856–869 | DOI | MR | Zbl

[5] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh-uravnenii, Nauka, M., 1978 | MR

[6] Gulin A. V., “Ustoichivost raznostnykh skhem i operatornye neravenstva”, Differents. ur-niya, 15:12 (1979), 2238–2250 | MR | Zbl

[7] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. vuzov. Matem., 1979, no. 7, 41–52 | MR | Zbl

[8] Khorn R. A., Dzhonson Ch. S., Matrichnyi analiz, Mir, M., 1989 | MR

[9] Kaporin I. E., “Explicity preconditioned conjuagate gradient method for the solution of unsymmetric linear systems”, Internal J. Comput. Math., 40 (1992), 169–187 | DOI

[10] Elman H. C., Schultz M. M., “Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equation”, SIAM J. Numer. Analys., 23:1 (1986), 44–57 | DOI | MR | Zbl