Convergence theorems for iterative Runge–Kutta methods with a constant integration step
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 8, pp. 73-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_8_a8,
     author = {G. Yu. Kulikov},
     title = {Convergence theorems for iterative {Runge{\textendash}Kutta} methods with a constant integration step},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {73--89},
     year = {1996},
     volume = {36},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_8_a8/}
}
TY  - JOUR
AU  - G. Yu. Kulikov
TI  - Convergence theorems for iterative Runge–Kutta methods with a constant integration step
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 73
EP  - 89
VL  - 36
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_8_a8/
LA  - ru
ID  - ZVMMF_1996_36_8_a8
ER  - 
%0 Journal Article
%A G. Yu. Kulikov
%T Convergence theorems for iterative Runge–Kutta methods with a constant integration step
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 73-89
%V 36
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_8_a8/
%G ru
%F ZVMMF_1996_36_8_a8
G. Yu. Kulikov. Convergence theorems for iterative Runge–Kutta methods with a constant integration step. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 8, pp. 73-89. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_8_a8/

[1] Kulikov G. Yu., “Ob odnom sposobe chislennogo resheniya avtonomnoi zadachi Koshi s algebraicheskoi svyazyu na fazovye peremennye”, Vestn. MGU. Ser. matem., mekhan., 1992, no. 1, 14–19 | MR | Zbl

[2] Kulikov G. Yu., “O chislennom reshenii avtonomnoi zadachi Koshi s algebraicheskoi svyazyu na fazovye peremennye”, Zh. vychisl. matem. i matem. fiz., 33:4 (1993), 522–540 | MR | Zbl

[3] Kulikov G. Yu., “O chislennom reshenii avtonomnoi zadachi Koshi s algebraicheskoi svyazyu na fazovye peremennye (nevyrozhdennyi sluchai)”, Vestn. MGU. Ser. matem., mekhan., 1993, no. 3, 10–14 | MR

[4] Kulikov G. Yu., “Prakticheskaya realizatsiya i effektivnost chislennykh metodov resheniya zadachi Koshi s algebraicheskoi svyazyu”, Zh. vychisl. matem. i matem. fiz., 34:11 (1994), 1617–1631 | MR | Zbl

[5] Hairer E., Wanner G., Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer, Berlin, 1991 | MR | Zbl

[6] Hairer R., Lubich C., Roche M., The numerical solution of differential-algebraic systems by Runge-Kutta methods, Lect. Notes. Math., 1409, Springer, Berlin, 1989 | MR | Zbl

[7] Jackson K. R., Kvarno A., Norsett S. P., “The use of Butcher series in the analysis of Newton-like iterations in Runge-Kutta formulas”, Appl. Numer. Math., 1994, no. 15, 341–356 | DOI | MR | Zbl

[8] Khairer E., Nesett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[9] Arushanyan O. B., Zaletkin S. F., Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo MGU, M., 1990 | MR | Zbl

[10] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem so mnogimi neizvestnymi, Mir, M., 1975

[11] Kulikov G. Yu., Chislennoe reshenie zadachi Koshi s algebraicheskoi svyazyu na fazovye peremennye (s prilozheniyami v meditsinskoi kibernetike), Dis. ...kand. fiz.-matem. nauk, VTs RAN, M., 1994